×
25.08.2017
217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод. Для реализации способа образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга. Затем строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле: где S - площадь сечения образца. Изобретение позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности. 2 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей.

К ионпроводящим пленкам относятся твердополимерные ионообменные мембраны. Ионообменные мембраны используются в различных устройствах, в том числе в топливных элементах. Эффективность топливных элементов зависит от электропроводности ионообменных мембран, которая сильно понижается с уменьшением относительной влажности окружающей среды. В топливных элементах ионообменная мембрана находится в контакте с газообразной средой. Поэтому определение ее удельной электропроводности в таких условиях при различной относительной влажности является важной задачей.

Известен способ определения электропроводности ионообменных мембран (Т. Soboleva et al. / Journal of Electroanalytical Chemistry. 2008. 622, 145-152), заключающийся в определении сопротивления (R) между двумя электродами, расположенными на фиксированном расстоянии друг от друга (L), и расчете удельной электропроводности по формуле:

,

где σ - удельная электропроводность, S - площадь образца, L -расстояние между потенциальными электродами.

Недостатком такого способа является то, что при расчете удельной электропроводности не учитывается вклад контактного сопротивления на границе образец/электрод.

Известен способ определения удельной электропроводности ионообменных мембран (Ind. Eng. Chem. Res. 2005, 44, 7617-7626), заключающийся в определении электросопротивления образцов с помощью четырех электродов. Преимуществом данного способа является повышение достоверности определения электропроводности за счет уменьшения влияния индуктивности и емкости ячейки для определения электропроводности.

Недостатком такого способа является то, что вклад контактного сопротивления на границе образец/электрод не учитывается.

Известен способ определения удельной электропроводности ионообменных мембран, называемый методом с подвижным электродом (Электрохимия. 2000, 36, 365-368), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Данный способ заключается в учете вклада контактного сопротивления на границе образец/электрод. Контактное сопротивление (Rконт.) определяют путем экстраполяции зависимости сопротивления (R) от расстояния между электродами (L) в точку L=0. Удельную электропроводность (σ) рассчитывают по формуле:

.

где σ - удельная электропроводность, Sсеч - площадь сечения образца, L - расстояние между электродами, R - сопротивление, Rконт. - контактное сопротивление.

Недостатками этого прототипа является его использование для определения электропроводности ионообменных мембран только в контакте с жидкой средой и определение электропроводности двухконтактным способом, что не дает возможности определения из годографов импеданса значения сопротивления образца в контакте с газообразной средой.

Настоящее изобретение направлено на увеличение достоверности определения удельной электропроводности ионпроводящих пленок и тканей.

Технический результат достигается тем, что предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод, заключающийся в том, образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга, строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Количество электродов в ячейке определяется тем, что для описания графика зависимости ионного сопротивления от расстояния между электродами достаточно 6 электродов, дальнейшее увеличение количества электродов до 8 не приводит к заметному увеличению достоверности определения.

Сущность изобретения заключается в том, что характер зависимости сопротивления образца от расстояния между электродами позволяет учитывать вклад контактного сопротивления на границе образец/электрод, а использование четырехконтактного метода определения удельной электропроводности дает возможность определять значения сопротивления образца в контакте с газообразной средой из годографов импеданса, а значит, увеличить достоверность определения удельной электропроводности ионпроводящих материалов.

Изобретение проиллюстрировано на Фиг. 1, Фиг. 2 и в Таблице.

На Фиг. 1 «Схема ячейки для определения удельной электропроводности с восемью электродами» представлена схема ячейки, где

1-8 - медные электроды;

9 - подложка, на которую наносятся электроды;

10 - прижимная часть ячейки, обеспечивающая контакт между образцом и электродами.

На Фиг. 2 «Зависимость ионного сопротивления мембраны Nafion 117 от расстояния между потенциальными электродами» представлен характер зависимости, учитывающий вклад контактного сопротивления (Rконт.).

В Таблице «Удельная электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C» приведены экспериментально полученные значения удельной электропроводности.

Заявленный в качестве изобретения способ определения удельной электропроводности материала осуществляют следующим образом. Измеряют толщину (h) и ширину (w) образца с точностью 0.001 мм и 0.1 мм соответственно и рассчитывают его площадь сечения по формуле:

.

Образец помещают в ячейку между электродами в количестве от 6 до 8 единиц и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряют последовательно от трех до пяти спектров импеданса образца четырехэлектродным методом на переменном токе на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключают к электродам 1, 8, а потенциальные провода - к электродам 2, 7; или токовые к 1, 7, потенциальные - к 2, 6; или токовые к 1, 6, потенциальные - к 2, 5; или токовые к 1, 5, потенциальные - к 2, 4; или токовые к 1, 4, потенциальные - к 2, 3.

Строят график зависимости значений ионного сопротивления (R), полученного из спектров импеданса, от расстояния между электродами (L), характер зависимости (Фиг. 2) может быть описан формулой:

,

где учитывается Rконт - контактное сопротивление системы, равное свободному члену линейной регрессии. Находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Ниже приведены примеры конкретного осуществления способа определения удельной электропроводности ионпроводящего материала. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1.

Электропроводность ионообменной мембраны Nafion 117 определяли при относительной влажности RH=20% на воздухе при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в заданных условиях. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между шестью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно три спектра импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 6, потенциальные провода - к 2, 5 (спектр 1); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 2); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 3).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение удельной электропроводности, которое составило 1.5⋅10-3 Ом-1 см-1. Контактное сопротивление в данном случае равнялось 2667 Ом, что составляет 40% от измеряемого между ближайшими электродами сопротивления.

Пример 2.

Электропроводность ионообменной мембраны Nafion 117 определяли в контакте с водой при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в воде при заданной температуре. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между восемью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно пять спектров импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 8, потенциальные провода - к 2, 7 (спектр 1); затем токовые к 1, 7, потенциальные - к 2, 6 (спектр 2); затем токовые к 1, 6, потенциальные - к 2, 5 (спектр 3); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 4); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 5).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение электропроводности, которое составило 0.112 Ом-1см-1. Контактное сопротивление в данном случае равнялось 22.7 Ом, что составляет 33% от измеряемого между ближайшими электродами сопротивления.

Удовлетворение изобретения критерию «промышленная применимость» подтверждается следующим примером.

Пример 3.

По Примеру 1 определяли удельную электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C.

Результаты определения представлены в Таблице.

Как следует из Таблицы, удельная электропроводность мембраны Nafion 117 на 3 порядка возрастает с увеличением влажности, что согласуется с имеющимися литературными данными.

Заявляемый в качестве изобретения способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо при различной относительной влажности позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности.


Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Источник поступления информации: Роспатент

Showing 41-50 of 50 items.
02.03.2019
№219.016.d206

Мембрана ионоселективного электрода для определения ионов кальция

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а...
Тип: Изобретение
Номер охранного документа: 0002680865
Дата охранного документа: 28.02.2019
30.03.2019
№219.016.fa1a

Мембрана ионоселективного электрода для определения уранил-иона

Изобретение относится к области аналитической химии и может быть использовано для неразрушающего контроля и автоматического регулирования содержания уранил-ионов в водных растворах. Предложена мембрана ионоселективного электрода для определения уранил-иона, содержащая поливинилхлорид в качестве...
Тип: Изобретение
Номер охранного документа: 0002683423
Дата охранного документа: 28.03.2019
24.05.2019
№219.017.5d8a

Мембрана ионоселективного электрода для определения ионов кадмия

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть...
Тип: Изобретение
Номер охранного документа: 0002688951
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5e3d

Способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов,...
Тип: Изобретение
Номер охранного документа: 0002688755
Дата охранного документа: 22.05.2019
30.05.2019
№219.017.6b5f

Способ получения люминесцирующего стекла

Изобретение относится к области получения фторцирконатных и фторгафнатных люминесцирующих стекол, легированных трифторидом церия. В шихту из смеси фторидов металлов, выбранных из ряда: фторид металла IV группы; BaF; LaF; AlF; NaF, где в качестве фторида металла IV группы используют либо ZrF,...
Тип: Изобретение
Номер охранного документа: 0002689462
Дата охранного документа: 28.05.2019
01.11.2019
№219.017.dc1b

Способ получения гетероструктуры co/pbzrtio

Изобретение относится к области композиционных гетероструктур, обладающих высоким низкочастотным магнитоэлектрическим эффектом, состоящих из слоя ферромагнетика и керамической сегнетоэлектрической подложки, конкретно к способу получения слоя металлического кобальта на поверхности керамики...
Тип: Изобретение
Номер охранного документа: 0002704706
Дата охранного документа: 30.10.2019
03.07.2020
№220.018.2dfc

Мембрана ионоселективного электрода для определения лидокаина

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания лидокаина в водных растворах. Предложена мембрана ионоселективного электрода для определения...
Тип: Изобретение
Номер охранного документа: 0002725157
Дата охранного документа: 30.06.2020
11.05.2023
№223.018.53e1

Способ получения катализатора полного окисления метана на основе lnfesbo (ln=la-sm) со структурой розиаита

Изобретение относится к области гетерогенного катализа, конкретно к катализаторам окисления метана на основе сложных оксидов с нанесенными наночастицами благородных металлов, обладающим улучшенными каталитическими характеристиками, и может быть использовано в процессе очистки промышленных...
Тип: Изобретение
Номер охранного документа: 0002795468
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.5958

Состав мембраны ионоселективного электрода для определения ионов свинца

Изобретение относится к ионометрии, а именно к разработке составов мембран с ионной проводимостью для ионоселективных электродов, избирательных к ионам свинца. Состав мембраны ионоселективного электрода для определения ионов свинца включает поливинилхлорид в качестве полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002762370
Дата охранного документа: 20.12.2021
15.05.2023
№223.018.595a

Состав мембраны ионоселективного электрода для определения ионов свинца

Изобретение относится к ионометрии, а именно к разработке составов мембран с ионной проводимостью для ионоселективных электродов, избирательных к ионам свинца. Состав мембраны ионоселективного электрода для определения ионов свинца включает поливинилхлорид в качестве полимерной матрицы,...
Тип: Изобретение
Номер охранного документа: 0002762370
Дата охранного документа: 20.12.2021
Showing 31-36 of 36 items.
20.01.2018
№218.016.1520

Способ кислотной переработки бедного фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки бедного фосфатного сырья заключается в том, что сырье подвергают разложению 10÷40%-ным избытком 1,0÷5,6 молярной азотной кислоты, в которую предварительно добавляют 0,5÷50 мол.% сульфата калия по отношению к СаО,...
Тип: Изобретение
Номер охранного документа: 0002634948
Дата охранного документа: 08.11.2017
04.04.2018
№218.016.34b4

Способ кислотной переработки фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки фосфатного сырья включает разложение фосфатного сырья избытком ортофосфорной кислоты по отношению к стехиометрической норме по СаО, отделение образовавшегося монокальцийфосфата от маточного раствора фильтрацией и...
Тип: Изобретение
Номер охранного документа: 0002646060
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.4b31

Способ формирования шейки мочевого пузыря при выполнении везико-уретрального анастомоза после позадилонной простатэктомии

Изобретение относится к медицине, а именно к урологии. До наложения швов непосредственно на шейку мочевого пузыря визуализируют устья обоих мочеточников через отверстие в шейке мочевого пузыря для контроля поступления мочи и исключения возможности попадания последних в шов. Производят ушивание...
Тип: Изобретение
Номер охранного документа: 0002651690
Дата охранного документа: 23.04.2018
23.08.2019
№219.017.c329

Способ получения диметилового эфира (варианты)

Настоящее изобретение относится к двум вариантам способа получения диметилового эфира из метанола. Как первый, так и второй варианты способа включают дегидратацию метанола в паровой фазе на термостабильном композитном катализаторе состава MZr(PO) в трубчатом реакторе, который помещают в...
Тип: Изобретение
Номер охранного документа: 0002698094
Дата охранного документа: 22.08.2019
27.03.2020
№220.018.10a4

Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Предлагаемая группа изобретений относится к области химии, касается способа получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир в инертной атмосфере. Способ получения композитного термостабильного катализатора каркасного строения...
Тип: Изобретение
Номер охранного документа: 0002717686
Дата охранного документа: 25.03.2020
28.03.2020
№220.018.1108

Способ получения сверхчистого водорода паровым риформингом этанола

Изобретение относится к области создания катализаторов и реакторов для химической и нефтехимической промышленности, а именно к процессам дегидрирования и парового риформинга низших алифатических спиртов с целью получения высокочистого водорода, пригодного для использования в топливных...
Тип: Изобретение
Номер охранного документа: 0002717819
Дата охранного документа: 25.03.2020
+ добавить свой РИД