×
25.08.2017
217.015.b628

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния. Способ заключается в смешивании в стехиометрическом соотношении тетрафторида урана и кремнезема, предварительно подвергнутого механоактивации в присутствии 0,5-1,5 мас.% неорганического соединения щелочного элемента, грануляции гомогенизированной шихты, сушки гранул при температуре от 100 до 250°С и последующей термообработки гранул при температуре не выше 600°С в течение времени от 0,5 до 1 ч. В качестве неорганического соединения щелочного элемента используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития, натрия, калия, рубидия или цезия. Для получения UO термообработку проводят в среде сухого воздуха, для получения UO - в среде осушенных инертных газов. Техническим результатом является снижение энергозатрат и высокий выход продуктов, в том числе высокочистого тетрафторида кремния. 4 ил., 1 табл., 15 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана - U3O8 и UO2 - с получением другого ценного неорганического вещества - высокочистого прекурсора поликристаллического кремния - тетрафторида кремния:

Наиболее близким к предлагаемому способу получения (прототипом) является способ получения октаоксида триурана и тетрафторида кремния из тетрафторида урана и кремнезема (диоксида кремния), включающий механоактивацию диоксида кремния в присутствии 0,5-3% масс. NaF, гомогенизацию смеси в стехиометрическом соотношении, грануляцию гомогенизированной шихты, сушку при температуре 250-300°C и термообработку гранул в среде сухого воздуха при температуре не выше 600°C в течение 1-2 ч (патент РФ 2549415 А, МПК C01G 43/01, C01B 33/107).

Недостатками прототипа являются:

- повышенные энергозатраты, связанные с относительно высокой температурой сушки гомогенизированной шихты (до 300°C) и длительностью изотермической выдержки гранул при температуре не выше 600°C до 2 ч;

- относительно высокое содержание (до 3% масс.) NaF загрязняет твердый продукт (U3O8)

- невозможность получения диоксида урана (UO2).

Техническим результатом предлагаемого изобретения является снижение энергозатрат, получение наноструктурированных оксидов урана, высокий выход продуктов, в том числе высокочистого, не загрязненного летучими соединениями урана, тетрафторида кремния, расширение спектра и одновременное уменьшение содержания неорганических соединений щелочных элементов, добавляемых к кремнезему при механоактивации.

Технический результат достигается способом получения оксидов урана и тетрафторида кремния из тетрафторида урана путем смешения его со стехиометрическим количеством кремнезема, предварительно подвергнутого механоактивации в присутствии неорганического соединения щелочного элемента, гомогенизации смеси, грануляции гомогенизированной шихты, сушки и последующей термообработки гранул при температуре не выше 600°С в среде осушенного воздуха или осушенных инертных газов, например гелия, или азота, или аргона, при этом сушку гранул проводят при температуре от 100 до 250°С, термообработку гранул проводят в течение промежутка времени от 0,5 до 1 ч, а в качестве неорганического соединения щелочного элемента, добавляемого к кремнезему в количестве 0,5-1,5 мас. % при механоактивации, используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития или натрия, или калия, или рубидия, или цезия.

Изобретение реализуется следующим образом (Фиг. 1, 2).

Как и в прототипе, механическую активацию кремнезема в присутствии неорганических соединений щелочных элементов проводят в аппарате-измельчителе (аттриторе, планетарной, вибрационной, шаровой мельнице или других аппаратах). Длительность и условия механической активации кристаллических форм кремнезема определяются типом аппарата-измельчителя и их природой (кварц, кристобалит, тридимит). Далее осуществляется операция гомогенизации смеси реагентов в любом подходящем устройстве (смеситель типа «турбула», вибромельница и т.д.), а затем - гранулирование (размер гранул ~1 мм) гомогенизированной смеси (шихты) любым известным способом (для улучшения сыпучести и уменьшения пылеуноса). После гранулирования гранулы поступают в аппарат для сушки, которую проводят в токе сухого воздуха, инертного газа или в вакууме при температуре от 100 до 250°С, либо любым другим известным способом. Сушка гранул позволяет минимизировать содержание воды в системе и тем самым снизить вероятность протекания побочных реакций, в частности пирогидролиза тетрафторида урана. После сушки гранулы направляют на стадию термообработки, которую можно проводить как в аппарате с отсутствием перемешивания материала (например, тигель, лодочка), так и с перемешиванием (например, вращающаяся трубчатая печь). Термообработка материала проводится при температуре не выше 600°С в течение времени от 0,5 до 1 ч.

Твердые продукты - наноструктурированные диоксид урана или октаоксид триурана, собирают в любые подходящие емкости. Способ обеспечивает снижение содержания неорганических щелочных элементов в оксидах урана вдвое (с 8⋅10-2 мас. % до 4⋅10-2 мас. %).

Выделяющийся чистый газообразный тетрафторид кремния выводится из реактора и улавливается любым известным способом (например, криоконденсацией, сорбцией на фториде натрия).

Проведение процесса при температуре не выше 600°С исключает образование летучих соединений урана и, тем самым, гарантирует незагрязнение SiF4 ураном.

Изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). Кремнезем в виде кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в центробежно-планетарной мельнице в присутствии 3 мас. % NaF (0,9 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гранулируют, затем гранулы сушат при 250°С в вакууме в течение 2 ч и помещают в аппарат (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 15°С/мин до 600°С, выдерживают смесь при этой температуре 2 ч. Выход по SiF4 составляет 100%.

Пример 2. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Na2CO3 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 3. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% K2CO3 (0,3 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный гелий. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 4. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,5% LiF (0,15 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 5. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механической активации в планетарной мельнице в присутствии 1,5% KCl (0,45 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют и сушат при 150°С в вакууме в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный аргон. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 6. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Na2SO4 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 7. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1,5% NaOH (0,45 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 600°С и выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 8. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% KCl (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 150°С в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 0,15 ч. Выход по SiF4 составляет 85%.

Пример 9. Кремнезем в форме кристобалита (99,3% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,5% NaNO3 (0,15 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 0,5 ч. Выход по SiF4 составляет 100%.

Пример 10. Кремнезем в форме тридимита (99,4% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Li2CO3 (0,3 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 200°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный гелий. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 11. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 0,3% NaCl (0,09 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 80%.

Пример 12. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 2% Na3PO4 (0,6 г) в течение 60 мин, после чего смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 250°С в течение 1 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 13. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии добавки 1% K2CO3 (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 80°С в вакууме в течение 2 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 10-20°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 90%.

Пример 14. Кремнезем в форме кристобалита (99,3% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% CsF (0,3 г) в течение 60 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 100°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный воздух. Аппарат нагревают со скоростью 20-30°С/мин до 600°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Пример 15. Кремнезем в форме кварцевого концентрата (99,5% SiO2) массой 30,0 г подвергают механоактивации в планетарной мельнице в присутствии 1% Rb2CO3 (0,3 г) в течение 30 мин, после чего его смешивают с 156,2 г тетрафторида урана, гомогенизированную шихту гранулируют, сушат при 150°С в вакууме в течение 0,5 ч и помещают в аппарат без перемешивания (трубчатая печь), через который продувают осушенный азот. Аппарат нагревают со скоростью 10-20°С/мин до 575°С, выдерживают смесь при этой температуре 1 ч. Выход по SiF4 составляет 100%.

Условия проведения процесса и выход SiF4 сведены в таблицу 1.

Из приведенных примеров видно, что:

- снижение длительности и температуры процесса подготовки смеси, а также длительности изотермической выдержки при термообработке высушенных гранул позволяет значительно понизить энергозатраты по сравнению с прототипом (пример 1) при сохранении высокого выхода SiF4;

- снижение содержания неорганического соединения до величины менее 0,5% уменьшает выход SiF4 на 20% (пример 11), а увеличение содержания неорганического соединения свыше 1,5% не повышает выход SiF4, но увеличивает содержание примесей в оксидах урана ≥4⋅10-2 % масс. (пример 12);

- снижение температуры сушки гранул ниже 100°С уменьшает выход SiF4 на 10% (пример 13), а повышение температуры сушки не сказывается на выходе SiF4 (примеры 4-6);

- снижение времени термообработки гранул менее 0,5 ч приводит к уменьшению выхода SiF4 на 15% (пример 8);

- повышение температуры термообработки гранул выше 600°С не приносит положительного эффекта, т.к. выход SiF4, равный 100%, достигается при этой температуре (примеры 2-7, 9, 10, 12, 14, 15);

- как видно из фиг. 3 и фиг. 4, во всех примерах способ обеспечивает получение наноструктурированных оксидов урана.

Таким образом, заявленный способ получения оксидов урана UO2 и U3O8 и тетрафторида кремния из тетрафторида урана обеспечивает высокий (до 100%) выход высокочистых продуктов при температуре не выше 600°С в аппарате без перемешивания и использовании кристаллических форм кремнезема.

Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана, характеризующийся тем, что тетрафторид урана смешивают со стехиометрическим количеством кремнезема, предварительно подвергнутого механоактивации в присутствии 0,5-1,5 мас.% неорганического соединения щелочного элемента, гомогенизируют смесь, гранулируют гомогенизированную шихту, сушат при температуре от 100 до 250°С и термообрабатывают гранулы при температуре не выше 600°С в среде осушенного воздуха или осушенных инертных газов, при этом термообработку проводят в течение времени от 0,5 до 1 ч, при этом в качестве неорганического соединения щелочного элемента используют фторид лития, или калия, или рубидия, или цезия, или хлорид, или нитрат, или карбонат, или сульфат, или гидроксид, или фосфат лития, натрия, калия, рубидия или цезия.
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА
СПОСОБ ПОЛУЧЕНИЯ ОКСИДОВ УРАНА И ТЕТРАФТОРИДА КРЕМНИЯ ИЗ ТЕТРАФТОРИДА УРАНА
Источник поступления информации: Роспатент

Showing 11-20 of 74 items.
26.08.2017
№217.015.d493

Способ термоокислительного крекинга гудрона

Изобретение относится к нефтехимии, в частности к переработке гудрона для получения светлых нефтепродуктов и битума. Описан способ термоокислительного крекинга гудрона в реакторе непрерывного действия при повышенной температуре, включающий подачу предварительно нагретых до температуры реакции...
Тип: Изобретение
Номер охранного документа: 0002622291
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.dc0c

Способ получения алюмокремниевого коагулянта

Изобретение относится к технологии переработки алюмокремниевого сырья. Нефелиновое сырье измельчают, спекают при температуре 400-1000°C с карбонатом натрия, или дисульфатом калия, или гидросульфатом калия. Спек обрабатывают водой, или водным раствором серной или соляной кислоты, или водным...
Тип: Изобретение
Номер охранного документа: 0002624326
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e980

Способ извлечения рения из урановых растворов

Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для селективного извлечения рения из растворов. Способ извлечения рения из урансодержащих растворов включает сорбцию рения слабоосновным наноструктурированным ионитом на стиролакрилатной матрице,...
Тип: Изобретение
Номер охранного документа: 0002627838
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f9d0

Способ очистки l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности....
Тип: Изобретение
Номер охранного документа: 0002639705
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.05ed

Способ электролитического осаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием...
Тип: Изобретение
Номер охранного документа: 0002630994
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.05f4

Устройство для локального нанесения металлических покрытий электролитическим методом

Устройство относится к области гальванотехники и может быть использовано в электронном и термоэлектрическом приборостроении. Устройство содержит корпус, источник постоянного тока, кожух с закрепленным в нем анодом и электролизную ванну. Корпус разделен на две изолированные части - нижнюю и...
Тип: Изобретение
Номер охранного документа: 0002630996
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0678

Способ получения l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности,...
Тип: Изобретение
Номер охранного документа: 0002631110
Дата охранного документа: 19.09.2017
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1520

Способ кислотной переработки бедного фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки бедного фосфатного сырья заключается в том, что сырье подвергают разложению 10÷40%-ным избытком 1,0÷5,6 молярной азотной кислоты, в которую предварительно добавляют 0,5÷50 мол.% сульфата калия по отношению к СаО,...
Тип: Изобретение
Номер охранного документа: 0002634948
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
Showing 11-20 of 32 items.
26.08.2017
№217.015.d493

Способ термоокислительного крекинга гудрона

Изобретение относится к нефтехимии, в частности к переработке гудрона для получения светлых нефтепродуктов и битума. Описан способ термоокислительного крекинга гудрона в реакторе непрерывного действия при повышенной температуре, включающий подачу предварительно нагретых до температуры реакции...
Тип: Изобретение
Номер охранного документа: 0002622291
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.dc0c

Способ получения алюмокремниевого коагулянта

Изобретение относится к технологии переработки алюмокремниевого сырья. Нефелиновое сырье измельчают, спекают при температуре 400-1000°C с карбонатом натрия, или дисульфатом калия, или гидросульфатом калия. Спек обрабатывают водой, или водным раствором серной или соляной кислоты, или водным...
Тип: Изобретение
Номер охранного документа: 0002624326
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e980

Способ извлечения рения из урановых растворов

Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для селективного извлечения рения из растворов. Способ извлечения рения из урансодержащих растворов включает сорбцию рения слабоосновным наноструктурированным ионитом на стиролакрилатной матрице,...
Тип: Изобретение
Номер охранного документа: 0002627838
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f9d0

Способ очистки l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности....
Тип: Изобретение
Номер охранного документа: 0002639705
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.05ed

Способ электролитического осаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием...
Тип: Изобретение
Номер охранного документа: 0002630994
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.05f4

Устройство для локального нанесения металлических покрытий электролитическим методом

Устройство относится к области гальванотехники и может быть использовано в электронном и термоэлектрическом приборостроении. Устройство содержит корпус, источник постоянного тока, кожух с закрепленным в нем анодом и электролизную ванну. Корпус разделен на две изолированные части - нижнюю и...
Тип: Изобретение
Номер охранного документа: 0002630996
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0678

Способ получения l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности,...
Тип: Изобретение
Номер охранного документа: 0002631110
Дата охранного документа: 19.09.2017
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1520

Способ кислотной переработки бедного фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки бедного фосфатного сырья заключается в том, что сырье подвергают разложению 10÷40%-ным избытком 1,0÷5,6 молярной азотной кислоты, в которую предварительно добавляют 0,5÷50 мол.% сульфата калия по отношению к СаО,...
Тип: Изобретение
Номер охранного документа: 0002634948
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
+ добавить свой РИД