×
25.08.2017
217.015.b438

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу выделения изотопа Ni из облученной металлической мишени для использования в автономных источниках питания, например, основанных на бетавольтаическом эффекте. Способ включает нагревание металлического никеля, содержащего радионуклид Ni до температуры его испарения в вакуумной камере, трехступенчатую селективную фотоионизацию атомов целевого изотопа Ni путем одновременного импульсного облучения атомов пространственно совмещенными лазерными пучками с длиной волны , и с последующим выделением фотоионов Ni электрическим полем. Способ осуществляют при частоте повторения импульсов лазерных пучков 5-20 кГц при длительности импульса 20-100 нс, а среднюю плотность мощности лазерного излучения первой ступени выбирают в диапазоне 40÷100 мВт/см, второй ступени - 5÷40 мВт/см, третьей ступени - 3÷5 Вт/с при частоте повторения импульсов лазерных пучков 10 кГц при длительности импульса 20 нс. Техническим результатом является возможность осуществления технологического процесса, позволяющего в промышленных масштабах осуществлять одновременное выделение высокообогащенного радионуклида Ni и нанесение его на подложки. 3 з.п. ф-лы, 2 ил.

Область техники, к которой относится изобретение

Изобретение относится к способу лазерного выделения изотопа 63Ni с использованием фотоионизации целевого изотопа с последующим извлечением ионизированного целевого изотопа для использования в автономных источниках питания, в том числе основанных на бетавольтаическом эффекте.

Уровень техники

Радионуклид никеля 63Ni, являющийся чистым бета-излучателем с периодом полураспада более 100 лет - один из самых перспективных радионуклидов для создания миниатюрных автономных источников электрической энергии со сроком службы более 30 лет, работающих на бета-вольтаическом эффекте [Нагорнов Ю.С. «Современные аспекты применения бета-вольтаического эффекта» - Ульяновск: УлГПУ, 2012; Пустовалов А.А., Гусев В.В., Заддэ В.В., Петренко Н.С., Тихомиров А.В., Цветков Л.А. «Бета-вольтаический источник тока на основе никеля-63» - «Атомная энергия», т. 103, вып. 6, декабрь 2007].

Природный никель состоит из пяти стабильных изотопов со следующей распространенностью: 58Ni - 68.07%; 60Ni - 26.22%; 61Ni - 1.14%; 62Ni - 3.63%; 64Ni - 0.93%.

Известен способ получения радионуклида 63Ni, включающий следующую последовательность операций: получение обогащенного по 62Ni исходного материала с применением центробежного разделения, облучение его в реакторе, конверсия в летучее соединение с последующим обогащением по радиоизотопу 63Ni (L.J. Sosnin, I.A. Suvorov, A.N. Tcheltsov, B.I. Rogozev, V.I. Gudov Production of 63Ni of high specific activity. Nuclear Instruments and Methods in Physics Research, 1993, v. A334, p. 43-44.

Известен также патент RU №2313149 (оп. 20.12.2007, МПК G21G 1/06, B01D 59/20) «Способ получения радионуклида никель-63». При условии обогащения мишени по 62Ni до уровня в 50%, содержание 63Ni в конечном продукте может достигать 50%. Для дальнейшего увеличения концентрации целевого изотопа требуется дополнительное центрифугирование, однако из-за высокой радиоактивности этот процесс становится технически сложным в реализации.

Известен также «Способ получения радионуклида никель-63», патент RU №2561378 (оп. 27.08.2015, МПК G21G 1/00, G21G 4/00, B01D 59/00).

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида 63Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ получения радионуклида 63Ni включает изготовление никелевой мишени, обогащенной по изотопу 62Ni, из композиционного материала, состоящего из наночастиц никеля или его соединений, окруженных буфером в виде твердого вещества, растворимого в воде или других растворителях, облучение мишени в нейтронном потоке ядерного реактора, разделение наночастиц мишени и буфера, направление буфера на радиохимическую переработку для выделения радионуклида 63Ni и возвращение наночастиц никеля в ядерный реактор в состав новой мишени. Изобретение обеспечивает повышение удельной активности радионуклида 63Ni, упрощение технологического процесса его получения и снижение количества радиоактивных отходов.

Известен «Способ получения радионуклида никель-63 для бета-вольтаических источников тока», патент RU №2569543 (МПК G21G 1/00, G21G 4/00, B01D 59/00, оп. 27.11.2015).

Изобретение относится к области получения радиоактивных изотопов, а более конкретно к технологии получения радиоактивного изотопа никель-63, используемого в производстве бета-вольтаических источников тока. Способ получения радионуклида никель-63 включает в себя получение из исходного никеля обогащенной по никелю-62 никелевой мишени с содержанием никеля-64 более 2%, облучение мишени в реакторе и последующее обогащение облученного продукта по никелю-63 до достижения им содержания 75% и более в обогащенном продукте. Изобретение обеспечивает крупномасштабное рентабельное производство никеля-63 для бета-вольтаических источников тока.

Недостатком вышеприведенных способов является необходимость центробежного изотопного обогащения облученного радиоактивного никеля. Работа с высокоактивным газообразным веществом приводит к загрязнению разделительного оборудования, постоянной опасности утечек и технически сложна.

Известны лазерные фотоионизационные методы выделения радионуклидов различных изотопов, например таллия, иттербия (патенты №№2317847, 2446003), но эти способы не подходят для использования для получения изотопа 63Ni.

Раскрытие изобретения

Техническим результатом, на которое направлено изобретение, является разработка способа выделения радионуклида 63Ni с низкой степенью радиоактивного загрязнения, который может быть использован в промышленных масштабах.

Для достижения указанного результата предложен способ получения радионуклида никель-63, включающий нагревание металлического никеля содержащего радионуклид 63Ni до температуры его испарения в вакуумной камере, трехступенчатую селективную фотоионизацию атомов целевого изотопа 63Ni путем одновременного импульсного облучения атомов пространственно совмещенными лазерными пучками с длиной волны , и с последующим выделением фотоионов 63Ni электрическим полем.

Кроме того,

- частота повторения импульсов лазерных пучков составляет 5-20 кГц при длительности импульса 20-100 нс;

- среднюю плотность мощности лазерного излучения первой ступени выбирают в диапазоне 40÷100 мВт/см2, второй ступени - 5÷40 мВт/см2, третьей ступени - 3÷5 Вт/с при частоте повторения импульсов лазерных пучков 10 кГц при длительности импульса 20 нс;

- выделение фотоионов 63Ni электрическим полем проводят на коллекторе, расположенном в вакуумной камере.

На фиг. 1 представлена схема фотоионизации никеля через автоионизационное состояние (АИС), позволяющая достигать высокой эффективности и селективности при выделении радионуклида 63Ni. Энергии уровней и длины волн (вакуумные) соответствуют 58Ni.

На фиг. 2 представлена изотопическая структура перехода 3d84s2 3F4→3d94p 1Fo3. Метки показывают длины волн перехода для четных изотопов NiI; ( - CTC(61Ni); - CTC(63Ni)).

Способ осуществляется следующим образом.

Исходным веществом является мишень из металлического никеля с некоторым содержанием радионуклида 63Ni. Способ получения 63Ni не имеет значения. В частности, возможна наработка радионуклида 63Ni при облучении природного никеля потоком нейтронов в реакторе. При этом ядро 62Ni поглощает нейтрон и превращается в 63Ni. Чем выше начальная концентрация 63Ni, тем выше производительность метода при равных концентрациях 63Ni в продукте.

Первая стадия процесса заключается в том, что металлический никель подвергается испарению в вакууме. Вакуум необходим для того чтобы исключить окисление металлического никеля, а также для того, чтобы сократить до минимума столкновения атомов никеля с атомами остаточного газа. Типичные значения давления остаточного газа 10-5÷10-9 мм рт.ст. Заметное испарение никеля происходит при его нагревании до температуры 1600÷1700°С. Способ нагревания не имеет значения. Общие принципы способа получения различных изотопов таким методом достаточно разработаны, см. например, патенты №№2317847, 2446003. Из потока испарения, с помощью диафрагм вырезается пучок атомов с расходимостью 5÷20°. Таким образом, формируется бесстолкновительный поток атомов никеля с малой расходимостью. Типичные значения плотности атомов в потоке 1011÷1014 атомов/см3.

Вторая стадия процесса заключается в селективной фотоионизации атомов 63Ni в рабочем объеме вакуумной камеры. Для осуществления фотоионизации атомов никеля разработана трехступенчатая схема фотоионизации (см. фиг. 1).

В качестве исходного уровня используется основное состояние никеля 3d84s2 3F4, заселенность которого при температуре 1700°С составляет 0.42. В соответствии с правилами сложения моментов, сверхтонкая структура основного состояния атома 63Ni со спиновым моментом ядра 1/2 состоит из двух подуровней, соответствующих значению полного момента F=7/2,9/2. Аналогично первое возбужденное состояние 3d94p 1Fo3 расщеплено на два подуровня с значениями полного момента F=5/2,7/2. Между основным и первым возбужденным состояниями в соответствии с правилами отбора возможны три перехода: 7/2-7/2, 7/2-5/2 и 9/2-7/2. Длина волны второго и третьего переходов практически совпадают. Интенсивность перехода 7/2-7/2 с длиной волны уступает интенсивности двух других переходов почти на порядок. Структура переходов первой ступени представлена на фиг. 2.

Длина волны переходов 7/2-5/2 и 9/2-7/2 попадает в промежуток между длинами волн поглощения стабильных изотопов никеля 64Ni (частотное расстояние 750 МГц) и 62Ni (частотное расстояние 1210 МГц) и это позволять осуществлять возбуждение и последующую фотоионизацию с высокой селективностью. Использование совпадающих переходов 7/2-5/2 и 9/2-7/2 позволяет вовлечь в процесс фотоионизации все атомы, находящиеся в основном состоянии, что способствует достижению высокой эффективности фотоионизации. Таким образом, трехступенчатая схема селективной фотоионизации 63Ni заключается в использовании в качестве первой ступени перехода из основного состояния 3d84s2 3F4 (подуровни 7/2 и 9/2) в первое возбужденное состояние 3d94p 1Fo3 (подуровни 5/2 и 7/2, длина волны ). В качестве второй ступени используется переход из состояния 3d94p 1Fo3 (подуровни 5/2 и 7/2) во второе возбужденное состояние 3d9 4d 2[7/2]4 (подуровни 5/2 и 7/2, длина волны ). Фотоионизация осуществляется за счет перехода из второго возбужденного состояния в автоионизационное с энергией 67707.610 см-1 (длина волны ). Для осуществления трехступенчатой фотоионизации необходимо одновременное воздействие на атомы лазерного излучения первой, второй и третьей ступени.

Для осуществления селективной фотоионизации используются импульсные перестраиваемые по длине волны лазеры на красителях с импульсной накачкой. В частности, возможна накачка лазерами на парах меди. Типичные значения частоты повторения импульсов 10 кГц, длительности импульса 20 нс. В этом случае, для осуществления эффективной и селективной фотоионизации средняя плотность мощности лазерного излучения первой ступени должна быть в диапазоне 40÷100 мВт/см2, второй ступени - 5÷40 мВт/см2, третьей ступени - 3÷5 Вт/см2. При таких параметрах достигается насыщение фотоионизации, а селективность фотоионизации превышает 1000.

Можно использовать лазеры с частотой импульсов 5 кГц или 20 кГц. При использовании лазеров с пониженной частотой надо пропорционально увеличивать протяженность рабочего объема, чтобы обеспечить вероятность облучения атомов. При накачке твердотельными лазерами длительность импульсов может достигать 100 нс.

Полученный поток атомов никеля облучают импульсным лазерным излучением, которое представляет собой три лазерных луча с различными длинами волн, совмещенными пространственно (в один луч) и по времени (одновременный приход импульсов). Типичный диаметр луча 5÷30 мм. Средняя длина пробега атомов за время между двумя импульсами при частоте повторения импульсов 10 кГц составляет 5 см, поэтому для увеличения вероятности облучения атомов импульсным лазерным излучением размер области облучения вдоль потока атомов целесообразно довести до 7-9 см. Это можно сделать за счет многократного прохождения лазерного излучения через пучок атомов за счет отражения с помощью зеркал лазерного эгрета на конце рабочего объема. Отраженный луч направляется обратно в рабочий объем с небольшим смещением с тем, чтобы облучить зоны рабочего объема, которые не были облучены при первом прохождении луча. Аналогично образуется третий, четвертый и все последующие проходы лазерного луча.

Третья стадия состоит в выделении фотоионов 63Ni электрическим полем.

Выделение образованных фотоионов 63Ni можно осуществлять, например, сразу на коллектор продукта, расположенный в вакуумной камере. Коллектор продукта может представлять собой пластину из проводящего материала произвольной формы. Для вытягивания положительно заряженных фотоионов на коллектор следует приложить отрицательное по отношению к окружающим предметам напряжение. Для увеличения напряженности поля возможно размещение поблизости с коллектором заземленного или положительно заряженного электрода. Типичное значение напряженности поля 10-100 В/см. В результате вытягивания фотоионов на пластине коллектора образуется пленка металлического никеля, обогащенного радионуклидом 63Ni. Пластина коллектора с напыленной пленкой радионуклида 63Ni может быть извлечена из вакуумной камеры и использована в качестве элемента в источнике питания.

Все конкретные параметры осуществления способа выбирают из возможностей оборудования и определяются в каждом конкретном случае.

Таким образом предложен способ получения никеля-63 фотоионизационным методом с высокой селективностью, реализация которого позволит нарабатывать данный изотоп в одном производственном цикле, который востребован в промышленных масштабах, в частности, для производства автономных источников питания.


СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА НИКЕЛЬ-63
Источник поступления информации: Роспатент

Showing 221-230 of 265 items.
10.07.2019
№219.017.b082

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Описан способ получения радионуклида висмут-212 из азотнокислого раствора, содержащего смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада, и...
Тип: Изобретение
Номер охранного документа: 0002439727
Дата охранного документа: 10.01.2012
12.07.2019
№219.017.b311

Противовоспалительный препарат на основе кетопрофена и способ его получения

Изобретение относится к области фармакологии, а именно к составу и способу получения противовоспалительного препарата на основе кетопрофена в виде лиофилизата для приготовления суспензии частиц с размером от 200 до 300 нм. Противовоспалительный препарат содержит, масс. %: активный компонент -...
Тип: Изобретение
Номер охранного документа: 0002694221
Дата охранного документа: 10.07.2019
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b692

Способ изготовления термобатареи

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002694797
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
27.07.2019
№219.017.b9ba

Способ получения радионуклеида лютеций-177

Изобретение относится к способу получения радионуклида Lu без носителя для использования в ядерной медицине. Способ включает в себя облучение мишени, содержащей Yb, потоком нейтронов в ядерном реакторе, в процессе облучения по реакции Yb(n,γ) Yb (1,9 час) β-→Lu в мишени нарабатывается целевой...
Тип: Изобретение
Номер охранного документа: 0002695635
Дата охранного документа: 25.07.2019
27.07.2019
№219.017.b9f4

Вакуумная камера термоядерного реактора

Изобретение относится к конструкции вакуумной камеры (ВК) и бланкета, которые являются элементами термоядерного реактора (ТЯР) или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Вакуумная камера термоядерного реактора состоит из корпуса, образованного внутренней и внешней...
Тип: Изобретение
Номер охранного документа: 0002695632
Дата охранного документа: 25.07.2019
17.08.2019
№219.017.c11b

Способ получения спин-поляризованных носителей заряда в графене

Использование: для получения спин-поляризованных носителей заряда в графене. Сущность изобретения заключается в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия со структурой Eu....
Тип: Изобретение
Номер охранного документа: 0002697517
Дата охранного документа: 15.08.2019
01.09.2019
№219.017.c4f7

Способ количественного определения массы углеродных наноструктур в образцах

Изобретение относится к области экологии и материаловедения, а именно нанотехнологии, и может быть использовано для количественного определения углеродных наноструктур (УН), в частности углеродных нанотрубок, в твердых и жидких образцах и различных средах. Для этого в исследуемом образце с...
Тип: Изобретение
Номер охранного документа: 0002698718
Дата охранного документа: 29.08.2019
06.09.2019
№219.017.c7f6

Модульный ядерный реактор на быстрых нейтронах малой мощности с жидкометаллическим теплоносителем и активная зона реактора (варианты)

Изобретение относится к модульному ядерному реактору малой мощности на быстрых нейтронах с жидкометаллическим теплоносителем. Реактор содержит корпус с крышкой, с расположенными внутри него активной зоной, теплообменниками промежуточного контура, циркуляционными насосами с напорным коллектором,...
Тип: Изобретение
Номер охранного документа: 0002699229
Дата охранного документа: 04.09.2019
Showing 161-162 of 162 items.
05.03.2020
№220.018.0967

Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63

Изобретение относится к способу изготовления полупроводниковых бета-вольтаических преобразователей на основе радионуклида никель-63 для использования в автономных источниках электрического питания. Способ изготовления полупроводниковых бета-вольтаических ячеек на основе радионуклида никель-63,...
Тип: Изобретение
Номер охранного документа: 0002715735
Дата охранного документа: 03.03.2020
22.07.2020
№220.018.3562

Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент

Группа изобретений относится к офтальмологии. Способ лечения открытоугольной формы глаукомы путем обеспечения оттока водянистой влаги через склеру в проекции цилиарного тела посредством серии лазерных аппликаций по его периметру. В месте каждой конкретной аппликации с помощью рабочего...
Тип: Изобретение
Номер охранного документа: 0002727036
Дата охранного документа: 17.07.2020
+ добавить свой РИД