×
25.08.2017
217.015.b230

Результат интеллектуальной деятельности: СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении механизированной сваркой металлоконструкций ответственного назначения. С основной сварочной проволокой применяют дополнительную присадочную проволоку, содержащую оболочку, наполненную наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия. Дополнительную присадочную проволоку подают в хвостовую часть сварочной ванны. Наноструктурированные порошки из расплавленной присадочной проволоки попадают без расплавления в поток перегретого жидкого металла, направленного из-под дуги в хвостовую часть, перемешиваются в нем и служат дополнительными центрами кристаллизации металла шва. Способ обеспечивает повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла. 9 ил.

Изобретение относится к области дуговой сварки, а именно к способам получения сварных соединений при изготовлении металлоконструкций ответственного назначения.

Известен способ дуговой сварки, в котором дополнительно вводят присадочную проволоку в хвостовую часть расплавленной ванны. В результате происходит меньшее тепловложение, уменьшается термический цикл сварки, уменьшается количество проходов и сварочные деформации (П.Л. Жилин, Б.П. Конищев, С.А. Лебедев. Исследование увеличения производительности и качества процесса сварки в CO2 с дополнительной холодной присадкой. // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. - 2014. - №5. - С. 381-387).

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла.

Известен способ дуговой сварки (Авторское свидетельство №525511), в котором осуществляют введение дополнительной присадочной проволоки в хвостовую часть сварочной ванны. В результате повышается стойкость металла шва против образования холодных и горячих трещин.

Недостатком способа является то, что в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на механические свойства сварных соединений.

Прототипом способа выбран способ механизированной сварки плавящимся электродом в среде защитных газов, в котором осуществляют введение присадочной проволоки в хвостовую часть сварочной ванны. В результате происходит уменьшение перегрева расплава ванны и металла зоны термического влияния. Нагрев и плавление присадочной проволоки происходит за счет теплоты, переносимой потоками жидкого металла (Лащенко Г.И. Способы дуговой сварки стали плавящимся электродом. - К.: «Екотехнология», 2006. - 384 с.).

Недостатки способа - в качестве присадочной проволоки использованы стандартные проволоки, что снижает степень воздействия на формирование структуры наплавленного металла и механические свойства сварных соединений.

Задача изобретения - повышение механических свойств и коррозионной стойкости сварных соединений за счет управления структурой наплавленного металла.

Поставленная задача достигается тем, что в способе механизированной сварки плавящимся электродом в среде защитных газов дополнительно к основной сварочной проволоке, разогретой источником питания, применяют присадочную проволоку, выполненную по технологии изготовления порошковой проволоки, в состав сердечника которой входят наноструктурированные порошки вольфрама, молибдена или оксида алюминия. Присадочную проволоку подают в хвостовую часть сварочной ванны. Присадочная проволока плавится в потоке перегретого жидкого металла сварочной ванны, направленного из-под дуги в хвостовую часть. Наноструктурированные порошки из расплавленной присадочной проволоки попадают в хвостовую часть сварочной ванны, не проходят дуговой промежуток, т.е. практически без потерь переходят в жидкий металл сварочной ванны, перемешиваются в ней и служат дополнительными центрами кристаллизации при образовании зерна микроструктуры наплавленного металла - модифицируют структуру наплавленного металла шва. Они не расплавляются в жидкой сварочной ванне в связи с их высокой температурой плавления. Увеличение количества центров кристаллизации в жидкой сварочной ванне приводит к образованию мелкодисперсной, однородной микроструктуры сварного соединения и позволяет активно управлять структурой наплавленного металла и механическими свойствами сварного соединения.

На фиг. 1 представлена схема способа механизированной сварки плавящимся электродом в среде защитных газов с введением присадочной проволоки в хвостовую часть сварочной ванны 1 - основная сварочная проволока, 2 - источник питания, 3 - присадочная проволока, 4 - хвостовая часть сварочной ванны, 5 - перегретый жидкий металл сварочной ванны.

На фиг. 2 представлена длина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 1,5 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 1 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 0,9 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 1 мкм.

На фиг. 3 представлена ширина дендритов: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 21 мкм, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 11 мкм, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 7 мкм, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 12 мкм.

На фиг. 4 представлено временное сопротивление сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 5442 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама (5491 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 5717 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 5687 МПа.

На фиг. 5 представлен предел текучести сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов (2500 МПА); 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2765 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2824 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2736 МПа.

На фиг. 6 представлено относительное удлинение сварных соединений при температуре +20°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 35%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 39%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 40%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 38%.

На фиг. 7 представлено временное сопротивление сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 3579 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 3912 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 3952 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 3628 МПа.

На фиг. 8 представлен предел текучести сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов - 2108 МПА, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 2206 МПа, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 2392 МПа, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена - 2304 МПа.

На фиг. 9 представлено относительное удлинение сварных соединений при температуре +500°C: 1 - способ механизированной сварки плавящимся электродом в среде защитных газов 31%, 2 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 33%, 3 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия 34%, 4 - тем же способом с введением в хвостовую часть сварочной ванны присадочной проволоки, наполненной наноструктурированным порошком молибдена 32%.

Использование предлагаемого способа обеспечивает по сравнению с известными способами следующие преимущества:

А) Происходит управление структурой наплавленного металла, получение мелкозернистой, однородной структуры.

На фиг. 2 видно, что средний размер дендрита по длине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,5 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 1,7 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,5 раза (4).

На фиг. 3 видно, что средний размер дендрита по ширине уменьшается: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама в 1,9 раза (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия в 3 раза (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена в 1,7 раза (4).

В) Происходит повышение механических свойств сварных соединений.

На фиг. 4 видно, что происходит повышение временного сопротивления при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 1% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 5% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 4% (4).

На фиг. 5 видно, что происходит повышение предела текучести при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 13% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 6 видно, что происходит повышение относительного удлинения при температуре +20°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 11% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 8% (4).

На фиг. 7 видно, что происходит повышение временного сопротивления при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 9% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 2% (4).

На фиг. 8 видно, что происходит повышение предела текучести при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 5% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 14% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 9% (4).

На фиг. 9 видно, что происходит повышение относительного удлинения при температуре +500°C: с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама на 6% (2); с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия на 10% (3); с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена на 3% (4).

С) Происходит повышение коррозионной стойкости. В зависимости от ориентации зерен их поверхность стравливалась сильнее или слабее. Таким образом, между зернами образовывались ступеньки. Определили среднюю высоту этих ступенек на разных образцах: традиционный способ - 320 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама - 200 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком оксида алюминия - 270 нм, с введением присадочной проволоки, наполненной наноструктурированным порошком молибдена - 250 нм. Чем больше высота ступеньки, тем менее коррозионно-стойкий металл. Наименьшая высота ступеньки зафиксирована у образца с введением присадочной проволоки, наполненной наноструктурированным порошком вольфрама, он меньше всего подвергся растравливанию при коррозионных испытаниях. Наибольшее влияние коррозионная среда оказала на образец, полученный традиционным способом.

Исследования проводились на следующем сварочном оборудовании: источник питания (Lorch S8 SpeedPulse), установка для сварки (Mecome модификация WP 1500). Для проведения исследований произведена сварка образцов, изготовленных из стали 12Х18Н10Т толщиной 10 мм, в среде аргона сварочной проволокой 12Х18Н9Т диаметром 1,2 мм с введением в хвостовую часть сварочной ванны присадочной проволоки диаметром 2 мм, состоящей из стальной оболочки и сердечника (состав сердечника - наноструктурированные порошки). Режимы сварки - сила тока 240-260 А, напряжение - 28-30 В, скорость сварки - 24-25 мм/с.

Способ механизированной сварки плавящимся электродом в среде защитных газов, включающий введение в хвостовую часть сварочной ванны дополнительной присадочной проволоки, отличающийся тем, что в качестве дополнительной присадочной проволоки используют проволоку, состоящую из стальной оболочки, наполненной наноструктурированными порошками вольфрама, или молибдена, или оксида алюминия, при этом ее подачу осуществляют с возможностью расплавления проволоки в перегретом жидком металле сварочной ванны без расплавления упомянутых наноструктурированных порошков, образующих дополнительные центры кристаллизации металла шва.
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
СПОСОБ МЕХАНИЗИРОВАННОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ
Источник поступления информации: Роспатент

Showing 61-70 of 79 items.
27.04.2019
№219.017.3c3b

Установка плазмохимического синтеза наноразмерных порошков и используемый в ней циклон

Изобретение относится к оборудованию плазмохимического синтеза ультрадисперсных порошков, неорганических соединений и композиций, в частности к установке плазмохимического синтеза наноразмерных порошков и шнековому циклону, используемому в ней. Установка содержит реактор, корпус которого...
Тип: Изобретение
Номер охранного документа: 0002686150
Дата охранного документа: 24.04.2019
03.07.2019
№219.017.a3db

Трёхосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники и может быть использовано для одновременного измерения линейного ускорений вдоль трех взаимно перпендикулярных осей. Акселерометр содержит подложку, неподвижные анкерные блоки, внешнюю прямоугольную раму, расположенную с зазором...
Тип: Изобретение
Номер охранного документа: 0002693010
Дата охранного документа: 01.07.2019
03.07.2019
№219.017.a461

Двухосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники, в частности к приборам для измерения линейного ускорения. Акселерометр содержит подложку из диэлектрического материала, анкерные блоки, неподвижно закрепленные на подложке, инерционную массу, Ω-образные упругие элементы, образующие подвес...
Тип: Изобретение
Номер охранного документа: 0002693030
Дата охранного документа: 01.07.2019
01.09.2019
№219.017.c5c5

Устройство для измерения сопротивления изоляции

Изобретение относится к области измерения электрических величин, а именно к электроизмерительной технике, и может быть использовано для измерения сопротивления изоляции кабелей, конденсаторов и других объектов. Устройство для измерения сопротивления изоляции содержит источник опорного...
Тип: Изобретение
Номер охранного документа: 0002698505
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.cc65

Способ рециклинга отходов гранатового песка от гидроабразивной резки

Изобретение относится к области рециклинга абразивов, применяемых в гидроабразивной резке материалов, и может быть использовано как в общем технологическом цикле резки, так и отдельно от установки гидроабразивной резки для регенерации используемых абразивов, в частности гранатового песка....
Тип: Изобретение
Номер охранного документа: 0002701017
Дата охранного документа: 24.09.2019
22.10.2019
№219.017.d8f4

Устройство компенсации собственных колебаний иглы зонда сканирующего микроскопа

Изобретение относится к технике сканирующего зонда, а именнок мониторингу положения зонда с помощью оптических средств и может быть использовано в туннельной, атомно-силовой, емкостной и других видах сканирующей зондовой микроскопии. Устройство компенсации собственных колебаний иглы зонда...
Тип: Изобретение
Номер охранного документа: 0002703607
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.dac8

Тренажер

Изобретение относится к устройствамдля тренировки быстроты или координации движений, а именно к балансировочным устройствам, и может быть использовано в тренажерных залах, в быту или в офисе для проведения тренировки или профилактического лечения вестибулярного аппарата. Тренажер содержит полый...
Тип: Изобретение
Номер охранного документа: 0002704143
Дата охранного документа: 24.10.2019
15.11.2019
№219.017.e27c

Способ определения параметров электродвигателя постоянного тока

Изобретение относится к автоматизированному электроприводу и может быть использовано для определения параметров электродвигателей постоянного тока. Способ определения параметров двигателя постоянного тока заключается в том, что одновременно измеряют мгновенные величины тока и напряжения в...
Тип: Изобретение
Номер охранного документа: 0002705939
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e294

Двухканальный сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений. Двухканальный сцинтилляционный счетчик ионизирующего излучения двух различных потоков энергий содержит сцинтиллятор, связанный через оптический герметик с кремниевым фотоэлектронным умножителем, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002705933
Дата охранного документа: 12.11.2019
01.12.2019
№219.017.e8be

Состав и способ получения материала, поглощающего электромагнитное излучение

Использование: для поглощения электромагнитного излучения в диапазоне высоких частот. Сущность изобретения заключается в том, что состав для получения материала, поглощающего электромагнитное излучение, включает стекло и карбид кремния, при этом в качестве стекла содержит жидкое стекло с...
Тип: Изобретение
Номер охранного документа: 0002707656
Дата охранного документа: 28.11.2019
Showing 51-53 of 53 items.
29.05.2019
№219.017.63b9

Способ очистки сточных вод и устройство для его осуществления

Изобретение предназначено для очистки сточных вод, относится к области очистки бытовых сточных вод комбинированным биохимическим методом и имеет широкий диапазон возможностей использования, в частности может быть использовано в отдельно стоящих домах и небольших поселках. Сточную воду подают в...
Тип: Изобретение
Номер охранного документа: 0002277514
Дата охранного документа: 10.06.2006
13.06.2019
№219.017.81c4

Автоматический сепаратор жиров

Изобретение относится к масложировой промышленности. Автоматический сепаратор жиров, включающий емкость и патрубки для подвода водожировой массы и слива очищенной воды. Патрубок для подвода выполнен в виде входной трубы, а емкость снабжена жироудерживающей входной перегородкой, которая...
Тип: Изобретение
Номер охранного документа: 0002390537
Дата охранного документа: 27.05.2010
16.07.2020
№220.018.3305

Устройство для импульсно-дуговой сварки с подогревом электродной проволоки

Изобретение относится к области электродуговой сварки плавящимся электродом и может применяться для сварки высоколегированных сталей, тонкостенных изделий, для наплавки слоев. Устройство содержит источник постоянного тока, два контактных наконечника для подвода тока к упомянутому электроду,...
Тип: Изобретение
Номер охранного документа: 0002726493
Дата охранного документа: 14.07.2020
+ добавить свой РИД