×
25.08.2017
217.015.af26

Результат интеллектуальной деятельности: Способ сборки оптико-механического блока космического аппарата

Вид РИД

Изобретение

Аннотация: Способ сборки оптико-механического блока космического аппарата относится к области космического оптического приборостроения и может быть использован при сборке, юстировке и калибровке крупногабаритных оптико-механических блоков, предназначенных для работы в космосе. Способ включает следующие операции: соединение оптических и механических деталей в единую конструкцию и юстировку с последующим контролем ее оптико-механических параметров в наземных условиях до и после имитации запуска, которые осуществляют на стенде, при температуре, соответствующей температуре эксплуатации конструкции на рабочей орбите, кроме того, дополнительно осуществляют калибровку в условиях, имитирующих параметры среды на рабочей орбите, по результатам которой судят о качестве юстировки. Технический результат предлагаемого изобретения заключается в том, что юстировка оптических элементов сохраняется не только после воздействия перегрузок, вибрации и ударов при запуске, но и при температурных воздействиях при работе на орбите. 2 ил.

Предлагаемое изобретение относится к области космического оптического приборостроения и может быть использовано при сборке, юстировке и калибровке крупногабаритных оптико-механических блоков, предназначенных для работы в космосе.

На космических аппаратах, решающих задачи астрономических наблюдений, устанавливаются высокоточные приборы и оборудование, одним из основных требований к которым является сохранение высокой геометрической стабильности конструктивных элементов в процессе эксплуатации: стабильности формы рабочих поверхностей зеркал, стабильности взаимного расположения оптических элементов телескопов и аппаратуры приема и регистрации излучений исследуемых объектов, стабильности взаимного расположения антенных модулей и т.д.

Известен способ сборки, юстировки и проверки оптических характеристик космических крупногабаритных оптических систем, которые производят в наземных условиях, когда они испытывают деформации от собственного веса, и чтобы уменьшить влияние деформаций на оптико-механические характеристики систем, при сборке оптические элементы устанавливают на опоры, а механическим элементам придают запас жесткости, который позволяет сохранить в требуемом допуске взаимное расположение оптических элементов систем. При сборке осуществляют определенную деформацию конструктивных элементов, которая будет устраняться в условиях невесомости, т.к. учитывается допуск на взаимное расположение элементов системы с учетом допустимой виброустойчивости конструкции. (Н.Н. Михельсон. Оптические телескопы. - М.: Наука, 1976 г., с. 455-469).

Точный контроль качества в земных условиях для таких систем невозможен, что не гарантирует высокое качество изображения в космических условиях.

Наиболее близким аналогом предлагаемого изобретения является способ сборки оптико-механической системы по авторскому свидетельству СССР №1839901 (публик. 20.05.2006 г.). Известный способ включает соединение оптических и механических деталей в единую конструкцию и юстировку с последующим контролем ее в наземных условиях до и после имитации запуска, при этом соединяемые детали независимо уравновешивают между собой в горизонтальном положение посредством съемных разгрузочных устройств поэлементно, а оптические параметры контролируют при повороте вокруг оптической оси на угол 180° при условии уравновешивания деталей и узлов.

Недостатком известного способа является то, что сборку осуществляют, учитывая только условия невесомости, при этом не учитывают температурные условия эксплуатации, что может привести к разъюстировкам на орбите оптических элементов системы.

В процессе эксплуатации в условиях переменных тепловых воздействий на стабильность геометрических характеристик аппаратуры определяющее влияние оказывают температурные деформации под воздействием неравномерных и меняющихся по времени температурных полей конструкции космического аппарата. Для космического аппарата с высокоточной аппаратурой обеспечение заданной геометрической стабильности конструкции является важной задачей в наземных условиях в процессе сборки.

Технический результат предлагаемого изобретения заключается в том, что применяя предлагаемый способ сборки, юстировка оптических элементов сохраняется не только после воздействия перегрузок, вибрации и ударов при запуске, но и при температурных воздействиях при работе на орбите.

Указанный технический результат достигается за счет того, что в способе сборки оптико-механического блока космического аппарата, включающем соединение оптических и механических деталей в единую конструкцию и юстировку с последующим контролем ее оптико-механических параметров в наземных условиях до и после имитации запуска, соединение оптических и механических деталей в единую конструкцию, юстировку и последующий контроль осуществляют на стенде при температуре, соответствующей температуре эксплуатации конструкции на рабочей орбите, дополнительно осуществляют калибровку в условиях, имитирующих параметры среды на рабочей орбите, и о качестве юстировки судят по результатам калибровки.

Осуществление соединения оптических и механических деталей в единую конструкцию, юстировку и последующий контроль на стенде при температуре, соответствующей температуре эксплуатации конструкции на рабочей орбите, позволяет избежать разъюстировки оптических элементов, которая была бы возможна из-за разности температур при юстировке и эксплуатации.

Осуществление дополнительной калибровки в условиях, имитирующих параметры среды на рабочей орбите, по результатам которой судят о качестве юстировки, позволяет повысить точность контроля, а следовательно, и точность юстировки.

На фиг. 1 изображена сборка, на фиг. 2 схематично изображен модуль А комплексного стенда, поясняющий предлагаемый способ, где: 1 - корпус сборки, 2 - щель спектрографа, 3 - зеркало коллиматора, 4 - горизонт искусственный, 5 - диагональное зеркало, 6 - оптическая скамья с кондуктором, 7 - уровень, 8 - визирная труба, 9 - автоколлимационный теодолит, 10 - теодолит для определения углов, 11 - зеркальный кубик, А, В - точки соединения оптической скамьи со сборкой.

Предлагаемый способ поясняется на примере сборки оптико-механический блока спектрографов (ОМБС), который устанавливается в инструментальный отсек телескопа в соответствии с его оптической схемой и схемой размещения полей зрения аппаратуры в фокальной плоскости телескопа в условиях открытого космического пространства. Приемники излучения с электроникой формирования выходного сигнала, блок калибровки, узел входной щели каждого спектрографа конструктивно объединены в моноблок. Для обеспечения безотказной работы и получения научных данных в процессе проведения астрофизических исследований с помощью приборов, входящих в ОМБС, их окончательную настройку, юстировку и калибровку должны проводить в условиях, максимально имитирующих условия эксплуатации на рабочей орбите. Для проведения сборки (а также юстировки и калибровки) с последующими вакуумными испытаниями проверки работоспособности и обеспечения функционирования спектрографов был создан специальный комплексный стенд, который обеспечивает проведение работ в лабораторных условиях при использовании источников видимого и ближнего УФ-диапазонов и в вакуумной области спектра. Комплексный стенд для осуществления предлагаемого способа состоит из двух модулей А и Б. Модуль А включает жесткий цилиндр с высотой и диаметром около 1,5 м, образующая которого выполнена в виде нескольких стержней и нескольких поперечных платформ, жестко связанных со стержнями. На одной из платформ расположены три площадки, которые с помощью, так называемой, оптической скамьи образуют плоскость, параллельную фокальной плоскости телескопа. Кроме того, на этой платформе расположены три отверстия (VUV, UV, LSS) и площадки для установки оптических деталей в виде кубиков, призм, зеркал. Предусматривается возможность на краю платформы установки приборов типа визирной трубы, автоколлимационного теодолита, гелий-неонового лазера с зеркалами, позволяющими направлять пучок лучей параллельно оси цилиндра (вдоль оси телескопа). В состав модуля А также входят: имитатор телескопа с источниками ультрафиолетового излучения и оптической системой, обеспечивающей облученность входных щелей спектрографов и заполняющую апертуру зеркал коллиматоров; имитаторы дифракционных решеток; имитаторы входных щелей; уровни; линейный фотоприемник типа ПЗС для видимой области спектра с системой обработки информации и выводом картины на дисплей; линейный фотоприемник типа ПЗС для УФ-области спектра с системой обработки информации и выводом картины на дисплей.

Калибровку осуществляют в модуле Б стенда, включающем камеру, снабженную системой вакуумирования, терморегулирования, контрольно-измерительными приборами и набором источников (ламп) ВУФ и УФ диапазонов. Вакуумная система включает линию откачки. Вакуумная камера имеет полезный объем диаметром 2 м и длиной 4 м.

К сборке относятся работы, связанные с установкой оборудования и исполнительных механизмов, монтажом систем, а также комплекс работ по проверке правильности выполнения монтажа. При окончательной сборке производится сборка и юстировка оптической системы ОМБС. Сборку осуществляют при нормальных атмосферных условиях при температуре, соответствующей температуре эксплуатации ОМБС на рабочей орбите, около 20°C. Сборку в единую конструкцию 1 выполняют с использованием механических реперов с высокой точностью. В стенд устанавливают силовой каркас, включающий платформу, ферму каркаса и ферму оптики, таким образом, чтобы его продольная ось была ориентирована вертикально (ось X). Предварительно согласуют ОМБС с системой координат имитатора телескопа. После выполнения разметки положения щелей спектрографов 2 и средних мест установки датчиков гида определяют их координаты и выполняют уточненный расчет угловых положений базовых осей (БО) юстировок спектрографов. Зеркала гелий-неонового лазера позволяют направлять пучок лучей параллельно оси цилиндра (вдоль оси телескопа). Детали для сборки ОМБС, прошедшие очистку и дегазацию, переносят в модуль А. Сначала устанавливают оптические элементы, не требующие юстировки (датчики гида), электронные (электронные блоки обслуживания детекторов) и механические элементы (кронштейны, опоры и т.п.). Затем устанавливают оптические элементы, требующие юстировки совместно с котировочными платформами. Контроль установки элементов спектрографов вдоль оси луча выполняют прямыми измерениями между опорными площадками оптических деталей. Контроль установки БО спектрографов на расчетные углы в системе выполняется в следующей последовательности: к сборке 1 присоединяется оптическая скамья с кондуктором 6 и «верхняя» плита сборки горизонтируется с контролем по уровням 7 на площадках кондуктора; автоколлимационный теодолит 9 устанавливают в плоскости XOZ таким образом, что изображение его визирной оси в диагональном зеркале 5 вертикально (контроль по искусственному горизонту 4) и направлено по оси X; далее поворотом визирной оси теодолита 9 откладывают от исходного направления ОХ составляющие в плоскостях XOY и XOZ расчетного угла на БО конкретного спектрографа; поперечными подвижками первой по ходу луча оптической детали тракта спектрографа совмещают центр этой детали с визирной осью теодолита 9; таким же образом устанавливают оси двух остальных спектрографов; с помощью теодолита 10 определяют углы наклона нормалей к двум видимым граням зеркального кубика 11. Оптическая скамья 6 должна быть расположена параллельно фокальной плоскости телескопа, а центры отверстий (VUV, UV, LSS) (фиг. 2) должны совпадать с серединами входных щелей спектрографов. Юстировка канала спектрографа сводиться к проверке соответствия положения оптических деталей выбранной оптической схеме. Проверку положения коллиматорного зеркала 3 и взаимного расположения входной щели спектрографа 2 осуществляют с помощью излучения лазера. Юстировку и проверку элементов ОМБС осуществляют с использованием источников видимого диапазона, эти же операции повторяются с использованием источников ближнего УФ-излучения, а также в вакуумной области спектра.

Окончательная проверка юстировки, калибровки и определения пороговой (минимальной) чувствительности проводится в вакуумной камере модуля Б. Для калибровки спектрографов по длинам волн каждого канала блока спектрографов, определяя их чувствительность в определенной области спектра, используют набор источников (ламп) ВУФ и УФ диапазонов. Это источники газоразрядного типа, использующие различные варианты тлеющего разряда в смесях инертных газов, дуговой разряд с накальным катодом, барьерный разряд и др. В качестве источников ВУФ-диапазона используются источники двух типов: спектральные лампы, излучающие резонансные линии криптона или ксенона; каждая такая лампа излучает две резонансные линии соответствующего газа; источником второго типа может служить разряд в аргоне с примесью азота, который излучает в диапазоне 110-176 нм несколько групп интенсивных атомарных линий азота. В процессе откачки по мере необходимости включаются контрольные приборы многоступенчатых систем измерения давления и температуры. Откачка в области форвакуума производится безмасленным насосом и при помощи криосорбционного насоса, дополняющего этот форвакуумный агрегат, давление в камере доводится до уровня 10-4 мм рт.ст. После этого включаются криогенные конденсационные высоковакуумные насосы, которые должны понизить давление в камере до уровня 10-8-10-9 мм рт.ст., наиболее благоприятного для работы вакуумного спектрографа. Одновременно контролируется состав остаточной среды в камере при помощи масс-спектрометра. При помощи централизованной системы подачи жидкого азота температура экранов доводится до 90±5 К, при ней все высококипящие компоненты остаточной среды сорбируются охлаждаемыми экранами камеры. Последние, кроме всего, имитируют температуру космического пространства. После доведения параметров камеры до требуемых значений высоковакуумные насосы отключаются и включается гелиевый высоковакуумный криоконденсатный насос, который, поддерживая уровень давления в камере без вибраций, позволяет начать проведение оптических операций контроля и калибровки спектрографов. Процедура калибровки включает в себя процессы стабилизации, процессы проверки коэф. усиления и уровня фона, пространственного разрешения и линейности, позиционной чувствительности и эффективности. По окончании этой работы отключается подача жидкого азота в камеру. Его пары при давлении 0,1-0,3 кг/см2 подаются в нагреватель системы осушки и отогрева экранов камеры. При температуре выше 290 К и такой же температуре спектрографов в камеру подается сухой азот. При давлении в ней на уровне 740-760 мм рт.ст. камера разгерметизируется и сборка отводится вновь на модуль А для проведения последующих операций с аппаратурой. По результатам калибровки судят о точности юстировки. Потом завершают сборку путем установки корпуса, крышек, теплоизоляции и т.д. Целесообразно подчеркнуть, что все работы должны вестись в помещениях с высокой чистотой воздуха. После чего сборку упаковывают в контейнер с контролируемыми средой (инертный газ) и температурой и отправляют на испытания. После проведения транспортных испытаний и испытаний на механические воздействия, имитирующие условия выведения на орбиту (вибрации, перегрузки, удары), сборку возвращают в вакуумную камеру и проверяют сохранность юстировки и калибровки.

Данный способ сборки позволяет обеспечить точность сохранения параметров системы при выводе ее в космос и в условиях космоса.

Способ сборки оптико-механического блока космического аппарата, включающий соединение оптических и механических деталей в единую конструкцию и юстировку с последующим контролем ее оптико-механических параметров в наземных условиях до и после имитации запуска, включающим определение качества юстировки, отличающийся тем, что соединение оптических и механических деталей в единую конструкцию и юстировку осуществляют на стенде при температуре, соответствующей температуре эксплуатации конструкции на рабочей орбите, а о качестве юстировки судят по результатам калибровки, которую осуществляют в условиях, имитирующих параметры среды на рабочей орбите.
Способ сборки оптико-механического блока космического аппарата
Способ сборки оптико-механического блока космического аппарата
Способ сборки оптико-механического блока космического аппарата
Источник поступления информации: Роспатент

Showing 391-400 of 495 items.
27.02.2020
№220.018.0699

Пломбировочное устройство

Использование: изобретение относится к пломбирующим устройствам, именно к навесным пломбам, предназначенным для контроля целостности опломбированного объекта, и может использоваться в любой области техники, где требуется контроль и определение фактов несанкционированного вмешательства. Сущность...
Тип: Изобретение
Номер охранного документа: 0002715043
Дата охранного документа: 21.02.2020
28.02.2020
№220.018.06d3

Способ сдерживания бокового разлета продуктов взрыва заряда взрывчатого вещества, метающего ударник, и устройство для его осуществления

Изобретение предназначено для применения при испытаниях военной техники, в которых используются взрывы зарядов взрывчатых веществ (ВВ). Способ основан на осуществлении инициирования на наиболее удаленных от ударника торцах метающего заряда ВВ и, по крайней мере, одного дополнительного заряда...
Тип: Изобретение
Номер охранного документа: 0002715322
Дата охранного документа: 26.02.2020
28.02.2020
№220.018.06ef

Система мониторинга разъемных соединений кабельного тракта

Изобретение относится к технике связи, в частности к оборудованию кабельных систем и может использоваться для идентификации состояния портов коммутационных панелей, через которые осуществляется соединение сетевых устройств. Техническим результатом является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002715361
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.072d

Способ количественного определения галогенидов лития в литиевом электролите для тепловых химических источников тока

Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых...
Тип: Изобретение
Номер охранного документа: 0002715225
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.077f

Контейнер со средствами защиты и контроля

Изобретение относится к области обеспечения контроля и безопасности хранения и транспортирования радиационно-, пожаро-, взрывоопасных изделий. Контейнер со средствами защиты и контроля состоит из наружного силового корпуса, противопулевого защитного экрана, теплозащитного слоя, демпфирующего...
Тип: Изобретение
Номер охранного документа: 0002715379
Дата охранного документа: 27.02.2020
29.02.2020
№220.018.0783

Приемопередатчик бортового ретранслятора

Изобретение относится к области радиотехники и может быть использовано для передачи и приема сигналов в системах спутниковой связи. Технический результат - обеспечение регулировки и автономного контроля работоспособности приемопередающей системы. Приемопередатчик включает приемник, передатчик,...
Тип: Изобретение
Номер охранного документа: 0002715376
Дата охранного документа: 27.02.2020
02.03.2020
№220.018.0802

Способ разделения частиц по плотности методом тяжелосредной сепарации

Изобретение относится к способам сепарации из состава смесей полезных компонентов, разделения смесей твердых частиц по плотности и размерам, в частности, металлов, платины, золота из горнорудного сырья. Способ разделения частиц по плотности методом тяжелосредной сепарации включает смешение...
Тип: Изобретение
Номер охранного документа: 0002715491
Дата охранного документа: 28.02.2020
06.03.2020
№220.018.0997

Фазовращатель

Изобретение относится к области радиотехники, в частности к фазовращателям СВЧ-сигнала, и может быть использовано в качестве функционального узла в приемо-передающих трактах радиотехнических систем и базового элемента при создании коммутирующих устройств СВЧ. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002715910
Дата охранного документа: 04.03.2020
07.03.2020
№220.018.0a11

Способ оценки ядерно-опасного состояния размножающей системы

Изобретение относится к области физики ядерных реакторов. Способ оценки ядерно-опасного состояния размножающей системы (PC) с активной зоной из делящегося материала путем определения коэффициента умножения нейтронов в РС заключается в том, что организуют канал контроля (КК) потока нейтронов,...
Тип: Изобретение
Номер охранного документа: 0002716018
Дата охранного документа: 05.03.2020
Showing 121-130 of 130 items.
17.02.2018
№218.016.2b71

Прецизионный многопроволочный лайнер

Изобретение относится к физике высоких плотностей энергии и термоядерного синтеза и может использоваться при получении мощных потоков мягкого рентгеновского излучения. Многопроволочный лайнер содержит анод и катод с токопроводяшими деталями, систему токопроводящих проволочек, соединенных с...
Тип: Изобретение
Номер охранного документа: 0002643167
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2c97

Комбинированный взрывной заряд

Изобретение относится к области взрывной техники, а именно к конструированию взрывных зарядов на основе бризантных взрывчатых веществ. Комбинированный взрывной заряд из бризантного взрывчатого вещества выполнен с центральным осевым каналом, который заполнен композицией на основе неорганических...
Тип: Изобретение
Номер охранного документа: 0002643844
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2e14

Система корректировки траекторий потока заряженных частиц

Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела. Система корректировки траекторий потока заряженных частиц содержит...
Тип: Изобретение
Номер охранного документа: 0002643507
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
06.04.2019
№219.016.fdb8

Способ нарезания конических зубчатых колес для роторного двигателя

Изобретение относится к станкостроению, а именно к способу нарезания конических колес. Способ включает настройку относительно друг друга червячной фрезы 2 конической формы и нарезаемого колеса 1, которые устанавливают относительно друг друга соприкасающимися поверхностями предварительно...
Тип: Изобретение
Номер охранного документа: 0002684141
Дата охранного документа: 04.04.2019
18.05.2019
№219.017.5851

Генератор синглетного кислорода

Изобретение относится к генераторам синглетного кислорода и может быть использовано в химических кислород-йодных лазерах, а также в технологических установках по дезинфекции воды, нейтрализации и утилизации промышленных органических загрязнителей и отходов. Устройство включает реакционную...
Тип: Изобретение
Номер охранного документа: 0002307434
Дата охранного документа: 27.09.2007
29.05.2019
№219.017.648a

Резонатор лазера

Изобретение относится к квантовой электронике и может быть использовано в конструкциях лазеров. Резонатор лазера содержит опорную конструкцию и несущую конструкцию с установленными на ней зеркалами и снабженную двумя устройствами для крепления на опорной конструкции. Одним из крепежных...
Тип: Изобретение
Номер охранного документа: 0002299505
Дата охранного документа: 20.05.2007
+ добавить свой РИД