×
25.08.2017
217.015.a9c6

Результат интеллектуальной деятельности: СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ НАНОЧАСТИЦ ОКСИДА КРЕМНИЯ С ВКЛЮЧЕННЫМИ КВАНТОВЫМИ ТОЧКАМИ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом. Описан способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 ч, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан и перемешивают в течение 24 ч, где в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода – 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 10 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана. Технический результат: разработан способ модификации нанокомпозитов оксида кремния с квантовыми точками посредством пришивания амино- и ПЭГ-групп. 5 пр.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом (полиэтиленгликоль (ПЭГ)). Заявляемый способ позволяет получить нанокомпозит, представляющий собой КТ, покрытую оболочкой оксида кремния с ПЭГ-фрагментами и доступными аминогруппами.

Существует метод синтеза КТ, заключенных в оболочку оксида кремния, с доступными функциональными аминогруппами и стабилизированных полимерными фрагментами (Bingbo Zhang, Da Xing, Chao Lin, Fangfang Guo, Peng Zhao, Xuejun Wen, Zhihao Bao, Donglu Shi. Improving colloidal properties of quantum dots with combined silica and polymer coating for in vitro immuofluorenscence assay. Journal of Nanoparticle Research. 13. 2011. 2407-2415). Для силанизации используется технология микроэмульсии: процесс полимеризации силанизирующего агента происходит на поверхности КТ в нанокапле воды, стабилизированной в органическом растворителе с помощью молекул поверхностно-активного вещества (ПАВ). Метод позволяет получать стабильные нанокомпозиты с узким распределением по размерам, квантовый выход которых не падает в процессе силанизации, с высокой стабильностью в физиологических средах. Недостатком данного метода является использование полиакриловой кислоты для повышения стабильности амино-модифицированных частиц.

Известен также коллоидный синтез по методу Штобера наночастиц оксида кремния, содержащих КТ, поверхность которых модифицирована ПЭГ-фрагментами (Yoshio Kobayashi, Hiromu Matsudo, Tomohiko Nakagawa, Yohsuke Kubota, Kohsuke Gonda, Noriaki Ohuchi. In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. Journal of Sol-Gel Science and Technology. 66. 2013. 31-37). Метод позволяет получать стабильные нанокомпозиты, квантовый выход которых практически не падает в процессе силанизации. В качестве ПЭГ прекурсора использовали метокси-полиэтиленгликоль силан, М=5000 г/моль. Недостатками данного метода являются необходимость использования изначально водорастворимых КТ (в данном случае стабилизированных меркаптопропионовой кислотой), а также большой разброс по размерам полученных нанокомпозитов (50.2 ± 17.9 нм) и соответственно неравномерное распределение функциональных групп по поверхности каждой из наночастиц.

Наиболее близким к заявленному техническому решению является способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, описанный в J. Mater. Chem., 2011, 21, 19257. В данном методе КТ и наночастицы магнетита покрывают оболочками оксида кремния по методу обратной микроэмульсии, а после модифицируют поверхность силанизирующими агентами, содержащими аминогруппу (3-аминопропилтриметоксисилан (АПС)) и полиэтиленгликолевые фрагменты (2-метокси(полиэтиленокси)6-9пропил-триметоксисилан (МПЭГТМС)). Для создания микроэмульсии при интенсивном перемешивании смешивают 35 г неполярного растворителя циклогексана и 2 г неионогенного поверхностно-активного вещества Igepal CO-520, через 20 минут добавляют 0,45 мг КТ структуры CuInS2/ZnS и 0,2 мг наночастиц магнетита, с последующим добавлением 36 мкл раствора аммиака и 150 мкл тетраэтоксисилана (ТЭОС). Через 24 часа перемешивания к полученному раствору добавляли 300 мкл свежеприготовленной смеси АПС и МПЭГТМС при соотношении компонентов в смеси 3:1 соответственно, а затем продолжали перемешивать еще 24 часа. Далее частицы очищали и растворяли в водных растворах. Повышение стабильности с помощью ПЭГ-фрагментов не только повышает стабильность наночастиц, но и делает их биосовместимыми. Однако в способе, принятом за прототип, используют большие объемы органических растворителей, что является очевидным недостатком.

Задачей изобретения является разработка способа модификации нанокомпозитов оксида кремния с КТ посредством пришивания амино- и ПЭГ-групп. Добавление активной аминогруппы на поверхность нанокомпозита оксида кремния с КТ происходит за счет определенной методики синтеза, включающей использование конкретных кремнийорганических соединений.

Технический результат заявляемого изобретения заключается в увеличении буферной стабильности полученных наночастиц, модифицированных с помощью ПЭГ-фрагментов. Заявляемый способ отличается высоким выходом продукта, простотой процесса и обеспечивает максимальную устойчивость полученных наночастиц в водных и буферных растворах с различными рН и ионной силой. Кроме того, заявляемый способ позволяет снизить расход модифицирующих реагентов и неполярного растворителя.

Указанный технический результат достигается тем, что в способе модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 часов, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)6-9пропил-триметоксисилан и перемешивают в течение 24 часов, согласно решению в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода - 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 105 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)6-9пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана.

Для синтеза КТ, покрытых оболочкой оксида кремния, используют удобный метод обратной микроэмульсии, который впоследствии позволяет легко модифицировать поверхность различными функциональными группами, используя одновременно два модифицирующих кремнийорганических соединения, содержащих аминогруппу (АПС) и полиэтиленгликолевые фрагменты (МПЭГТМС).

КТ структуры CdSe/CdS/ZnS получают по известной методике (Elena S. Speranskaya, Natalia V. Beloglazova, Pieterjan Lenain, Sarah De Saeger, Zhanhui Wang, Suxia Zhang, Zeger Hens, Dietmar Knopp, Reinhard Niessner, Dmitry V. Potapkin, Irina Yu. Goryacheva. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics. 53. 2014. 225-231). Полученные КТ заключают в оболочки оксида кремния методом обратной микроэмульсии согласно следующей методике: для создания микроэмульсии в неполярный растворитель (гексан) добавляют неионогенное поверхностно-активное вещество (Brij L4) и деионизированную воду, так чтобы мольное соотношение неполярной и полярной фазы по отношению к ПАВ не превышало 9 и 3 соответственно; к полученной микроэмульсии добавляют КТ из расчета 0,5 нмоль на 1 мл неполярного растворителя и тетраэтоксисилан (ТЭОС) в качестве кремнийорганического соединения в сильном избытке по отношению к КТ (до 105 по молям) и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют модифицирующие силанизирующие АПС и МПЭГТМС в 30-кратном недостатке по отношению к вышеуказанному количеству ТЭОС и оставляют созревать раствор еще на 24 часа при перемешивании. Готовые частицы очищают и растворяют в воде или водных буферах.

Пример 1

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 10 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат нерастворимые в водной среде фрагменты вследствие недостаточного количества полярной фазы, используемой для создания микроэмульсии.

Пример 2

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 100 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат агрегаты частиц вследствие избытка добавляемой полярной фазы при создании микроэмульсии.

Пример 3

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 10 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы содержат большое количество нерастворимых в воде частиц, образовавшихся вследствие использования недостаточного количества силанизирующего агента ТЭОС.

Пример 4

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 60 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы не обладают достаточной интенсивностью флуоресценции вследствие слишком плотной и широкой оболочки SiO2, образовавшейся вследствие использования большого избытка силанизирующего агента ТЭОС.

Пример 5

Для создания микроэмульсии в 1 мл гексана при перемешивании добавляют 0,32 мл Brij L4 и 50 мкл деионизированной воды; к полученной микроэмульсии добавляют 0,5 нмоль КТ и 30 мкл ТЭОС в качестве кремнийорганического соединения и оставляют систему перемешиваться на магнитной мешалке на 24 часа для создания первичной оболочки оксида кремния на поверхности КТ. Через 24 часа добавляют 1,5 мкл АПС и 3 мкл МПЭГТМС для модифицирования поверхности КТ, заключенной в оболочку оксида кремния, и оставляют созревать раствор еще на 24 часа. Готовые частицы очищают и растворяют в воде или водных буферах. Полученные растворы стабильны во времени, обладают достаточной интенсивностью флуоресценции. Данные соотношения признаны оптимальными.

Заявляемый способ модификации применим ко всем КТ, получаемым методами высокотемпературного синтеза в органических растворителях и, как следствие, нуждающимся в процедуре модификации поверхности. В частности, заявляемый способ применим к КТ структуры CuInS2/ZnS, используемым в прототипе. Кроме того, способ был успешно апробирован на КТ, имеющих следующие структуры:

CdSe/ZnS (методика получения КТ описана в Beloglazova N.V., Speranskaya E.S., De Saeger S., Hens Z., S., Goryacheva I.Yu. Quantum dot based rapid tests for zearalenone detection. Anal. Bioanal. Chem. 2012. V. 403. N. 10. P. 3013-3024),

CuInS2/ZnS (методика получения КТ описана в Speranskaya E.S., Beloglazova N.V., S., Aubert Т., Smet P., Poelman D., Goryacheva I.Yu., De Saeger S., Hens Z. Environment-friendly CuInS2/ZnS quantum dots: hydrophilization with a PEG-containing polymer and application as fluorescent label in immunoassay. Langmuir, 2014, V. 30 (25), P. 7567-7575),

CdSe/CdS (методика получения КТ описана в Beloglazova, N.V., Foubert, А., Gordienko, A., Tessier, M.D., Aubert, Т., Drijvers, E., Goryacheva, I., Hens, Z., De Saeger, S., Sensitive QD@SiO2-based immunoassay for triplex determination of cereal-borne mycotoxins, Talanta, 2016, V. 160, P. 66-71).

Способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками, в котором готовят микроэмульсию, содержащую неполярный растворитель и поверхностно-активное вещество, затем добавляют квантовые точки и тетраэтоксисилан и перемешивают в течение 24 ч, после чего добавляют 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан и перемешивают в течение 24 ч, отличающийся тем, что в качестве неполярного растворителя используют гексан, в качестве поверхностно-активного вещества используют Brij L4, при этом в микроэмульсию добавляют деионизированную воду при следующем молярном соотношении компонентов: неполярный растворитель:поверхностно-активное вещество:деионизированная вода – 9:1:3; квантовые точки добавляют в количестве 0,5 нмоль на 1 мл неполярного растворителя, тетраэтоксисилан добавляют в количестве порядка 10 моль на один моль квантовых точек, 3-аминопропилтриметоксисилан и 2-метокси(полиэтиленокси)пропил-триметоксисилан добавляют в количестве 1/30 моль на один моль тетраэтоксисилана.
Источник поступления информации: Роспатент

Showing 71-80 of 96 items.
21.12.2019
№219.017.f00a

Способ неразрушающего контроля распределения намагниченности по толщине ферритовой плёнки

Изобретение относится к микро- и нанотехнологии. Способ неразрушающего контроля намагниченности эпитаксиальной ферритовой пленки на немагнитной подложке включает одновременное воздействие на пленку постоянного магнитного поля и СВЧ магнитного поля, измерение СВЧ сигналов на выходе пленки и...
Тип: Изобретение
Номер охранного документа: 0002709440
Дата охранного документа: 17.12.2019
27.01.2020
№220.017.facf

Добавка для культивирования эпителиальных клеток

Изобретение относится к добавке для ускорения пролиферации клеточных культур на основе хитозана, отличающейся тем, что она представляет собой хитозан в солевой форме, полученной при взаимодействии хитозана с органической кислотой, выбранной из аскорбиновой, или аспарагиновой, или...
Тип: Изобретение
Номер охранного документа: 0002711920
Дата охранного документа: 24.01.2020
05.02.2020
№220.017.fdd2

Способ получения наночастиц аспарагината хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из аспарагината хитозана. Способ получения производных хитозана предусматривает смешивание хитозана с кислотой и получение целевого продукта. При этом используют порошок...
Тип: Изобретение
Номер охранного документа: 0002713138
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff3f

Способ диагностики состояния сосудов по форме пульсовой волны

Изобретение относится к медицине и может быть использовано для измерения и анализа состояния артериальной сосудистой системы по форме пульсовой волны, регистрируемой осциллометрическим методом, и проведения скрининговой диагностики состояния артериальной сосудистой системы человека. Проводят...
Тип: Изобретение
Номер охранного документа: 0002713157
Дата охранного документа: 04.02.2020
23.02.2020
№220.018.04b6

Средство, обладающее цитотоксической активностью

Изобретение относится к области органической химии и фармации. Предложено применение 2-(4-карбоксибензилиден)-3,4-дигидронафтален-1(2Н)-она в качестве средства, обладающего цитотоксической активностью. Технический результат: соединение подавляло метаболическую активность клеточных линий почки...
Тип: Изобретение
Номер охранного документа: 0002714932
Дата охранного документа: 21.02.2020
07.03.2020
№220.018.0a75

Способ количественного определения новокаина

Изобретение относится к аналитической химии, в частности к количественному определению новокаина. Предложен способ количественного определения новокаина, включающий обработку анализируемой пробы растворами органического реагента и додецилсульфата натрия, добавление цитратного буферного...
Тип: Изобретение
Номер охранного документа: 0002715997
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
Showing 31-39 of 39 items.
20.01.2018
№218.016.0eee

Биосенсор для неинвазивного оптического мониторинга патологии биологических тканей

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с...
Тип: Изобретение
Номер охранного документа: 0002633494
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1022

Способ оценки скорости осадконакопления

Изобретение относится к области геологии и может быть использовано для оценки скорости осадконакопления карбонатных отложений. Сущность: измеряют магнитную восприимчивость карбонатных пород на разных стратиграфических уровнях или участках разреза. Строят графики или карты значений, обратных...
Тип: Изобретение
Номер охранного документа: 0002633659
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1035

Устройство для дозированного вскрытия микрокапсул

Использование: для хранения микрокапсул с ЛВ и их дозированного вскрытия. Сущность изобретения заключается в том, что устройство для дозированного вскрытия микрокапсул содержит подложку и, по крайней мере, одну лунку для микрокапсулы, по крайней мере, один первый электропроводный слой,...
Тип: Изобретение
Номер охранного документа: 0002633655
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
04.04.2018
№218.016.307e

Способ изготовления биосенсорной структуры

Изобретение относится к технологии изготовления сенсорных структур на основе твердотельного полупроводника и функционального органического покрытия и может быть использовано при создании ферментных биосенсоров на основе полевых транзисторов или структур «электролит-диэлектрик-полупроводник»....
Тип: Изобретение
Номер охранного документа: 0002644979
Дата охранного документа: 15.02.2018
13.02.2019
№219.016.b951

Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на...
Тип: Изобретение
Номер охранного документа: 0002679460
Дата охранного документа: 11.02.2019
01.09.2019
№219.017.c529

Устройство для определения абсолютного квантового выхода люминесценции

Использование: для определения абсолютного квантового выхода люминесценции. Сущность изобретения заключается в том, что устройство для определения абсолютного квантового выхода люминесценции исследуемого вещества содержит расположенные на одной оптической оси источник света, фотометрический...
Тип: Изобретение
Номер охранного документа: 0002698548
Дата охранного документа: 28.08.2019
02.06.2023
№223.018.7593

Способ получения молекулярно-импринтированного полимера

Изобретение относится к области аналитической химии и молекулярной биологии и может быть использовано для получения полимера, содержащего отпечатки (импринтинг) молекул, с последующим его применением для анализа и разделения молекулярного материала. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002753850
Дата охранного документа: 24.08.2021
+ добавить свой РИД