×
25.08.2017
217.015.a66b

Результат интеллектуальной деятельности: Высоковольтный преобразователь ионизирующих излучений и способ его изготовления

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к области преобразователей энергии радиационных излучений в электрическую энергию и может быть также использовано в взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах и сенсорах, расположенных в труднодоступных местах и т.д. Высоковольтный преобразователь ионизирующих излучений содержит в полупроводниковой пластине n(p) типа проводимости вертикальные щели, на поверхности которых расположены вертикальные p-n-переходы и которые заполнены электропроводящим материалом радиоактивного изотопа, при этом преобразователь содержит дополнительную изолирующую подложку, на которой расположена полупроводниковая пластина n(p) типа проводимости, в которой сформированы глубокие щели в виде решетки, перпендикулярные к поверхности пластины, при этом их глубина достигает поверхности диэлектрической подложки, образуя полупроводниковые столбики n(p) типа проводимости, нижняя поверхность которых примыкает к изолирующей подложке, боковые поверхности примыкают к щелям, на боковых поверхностях столбиков расположены p(n) области, образующие боковые вертикальные p-n-переходы, на поверхности щелей расположен тонкий диэлектрик, изолирующий полупроводниковые столбики сбоку друг от друга, в объеме щелей расположен радиоактивный изотоп, на верхней поверхности столбиков расположены диэлектрик и контактные области p(n) типа к p-n-переходам и контактные области n(p) к столбикам n(p) типа проводимости, при этом контактные области соседних столбиков последовательно соединены между собой металлическими проводниками. Также предложен способ изготовления высоковольтного преобразователя ионизирующих излучений. Изобретение обеспечивает возможность получить практически не ограниченную величину выходного электрического напряжения и максимальную электрическую мощность на единицу объема и веса преобразователя. 2 н.п. ф-лы, 3 ил.

Настоящее изобретение относится к области преобразователей энергии ионизирующих излучений в электрическую энергию (Э.Д.С.). Известны конструкции двумерных (планарных - 2D) [1. Мурашев В.Н и др. «Полупроводниковый фотопреобразователь и способ его изготовления». Патент РФ №2377695 от 27.12.2009; 2. Guo Н., Zhang К., Zhang Yu., Zhang Yu., Han Ch., Shi Ya. I-layer vanadium-doped pin type nuclear battery and the preparation process thereof. USA Patent US 20140225472 A1 от 14.08.2014 г.] и трехмерных - (объемных - 3D) [3. Долгий А.Л. Бета-преобразователи энергии на основе макропористого кремния // 4-ая Международная научная конференция «Материалы и структуры современной электроники», 23-24 сентября 2010 г., Минск, Беларусь. С. 57-60; 4. Clarkson J.P., Sun W., Hirschman K.D., Gadeken L.L. and Fauchet P.M. Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes // Physica status solidi (a). 2007. V. 204. N 5. P. 1536-1540; 5. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L. and Fauchet P.M.A Three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics // Advanced Materials. 2005. V. 17. N 10. P. 1230-1233; 6. Gadeken L.L., Engel P.S., Laverdure K.S. Apparatus for generating electrical current from radioactive material and method of making same. 2008. USA Patent. US 20080199736 A1; 7. Chandrashekhar M.V.S, Thomas Ch. L, Spencer M.G. Betavoltaic cell. 2011. USA Patent. US 7939986 B2] преобразователей оптических и ионизирующих радиационных излучений в электрическую энергию.

Недостатки

Такие преобразователи способны создать электрическое напряжение в кристалле (чипе) не более величины, равной контактной разности потенциалов p-n-перехода (0,7 В), не позволяют получать более высокое напряжение, необходимое и удобное для большинства применений. Они содержат в кристалле или на пластине только один изолированный p-n-переход, и для получения «высокого» напряжения батареи необходимо соединять в единую конструкцию множество последовательно включенных чипов (или пластин). Данное обстоятельство сильно усложняет конструкцию и технологию изготовления высоковольтной батареи и не позволяет выполнить ее в миллиметровых микронных размерах, что необходимо для ряда применений.

Наиболее близкой по технической сущности является «щелевая» 3D конструкция полупроводниковых вольтаических преобразователей радиационных бета-излучений в электрическую энергию [7. Chandrashekhar M.V.S, Thomas Ch. I., Spencer M.G. Betavoltaic cell. 2011. USA Patent. US 7939986 B2] (см. фиг. 1), взятая за прототип, содержащая в полупроводниковой пластине n(p) типа проводимости вертикальные щели, на поверхности которых расположены вертикальные p-n-переходы и которые заполнены электропроводящим материалом радиоактивного изотопа.

Способ ее изготовления включает формирование в объеме полупроводниковой пластины n(p) типа проводимости щелей, легирование поверхности каналов примесью p(n) типа, осаждение на поверхность пластины и в полость щелей материала радиоактивного изотопа.

Общим недостатком аналогов и прототипа является невозможность получения в пределах кристалла (чипа, пластины) в едином технологическом процессе высоковольтного преобразователя - батарейки.

Техническим результатом изобретения является создание высоковольтного преобразователя (батарейки) на кристалле или пластине для расширения области применения преобразователей ионизирующих излучений на микроэлектронные устройства и МЭМС микромашины и упрощение технологии их получения.

Технический результат достигается изменением конструкции преобразователя за счет создания конструкции, состоящей из изолирующей (диэлектрической) подложки, на которой расположена полупроводниковая пластина n(p) типа проводимости, в которой сформированы глубокие щели, например, в виде решетки, перпендикулярные к поверхности пластины, при этом их глубина достигает поверхности диэлектрической подложки, образуя полупроводниковые столбики (мезы) n-(p-) типа проводимости, нижняя поверхность которых примыкает к изолирующей подложке, боковые поверхности примыкают к щелям, на боковых поверхностях столбиков расположены p+(n+) области, образующие боковые вертикальные p-n переходы, на поверхности щелей расположен тонкий диэлектрик, изолирующий полупроводниковые столбики (мезы) сбоку друг от друга, в объеме щелей расположен радиоактивный изотоп, на верхней поверхности столбиков расположены диэлектрик и контактные области p+(n+) типа к p-n-переходам и контактные области n+(p+) к столбикам n(p) типа проводимости, при этом контактные области соседних столбиков последовательно соединены между собой металлическими проводниками.

Способ ее изготовления включает соединение диэлектрической подложки и полупроводниковой пластины n(p) типа проводимости, формирование на ее поверхности n+ и p+ контактных областей, выращивание на ее поверхности оксида кремния, формирование полупроводниковых столбиков путем селективного травления глубоких щелей в виде решетки в полупроводниковой пластине до поверхности диэлектрической подложки, проведение диффузии примеси p(n) типа на боковой поверхности щелей, тонкое окисление поверхности щелей, осаждение на поверхность пластины и в полость щелей радиоактивного изотопа, удаление радиоактивного изотопа с поверхности пластины и оксида кремния, осаждение низкотемпературного оксида кремния на поверхность пластины, формирование контактных окон к n+ и p+ контактным областям, осаждение металла и проведение операции разводки - соединения металлом контактных областей соседних столбиков.

Изобретение поясняется приведенными чертежами:

Конструкция прототипа показана на фиг. 1.

На фиг. 1: 1 - полупроводниковая пластина n(p) типа проводимости, 2 - n+(p+) сильнолегированный контактный слой, 3 - p(n) область вертикальных p-n-переходов, 4 - p(n) область горизонтальных p-n-переходов, 5 - материал радиоактивного изотопа.

Конструкция преобразователя по изобретению показана на фиг. 2, где а - структура, б - топология, в - эквивалентная электрическая схема.

В ней полупроводниковая пластина n(p) типа проводимости - 1 расположена на изолирующей подложке, состоящей из кремниевой пластины - 6 и расположенного на ней слоя толстого диэлектрика - 7, в полупроводниковой пластине сформированы глубокие щели - 8 в виде решетки перпендикулярно к поверхности полупроводниковой пластины - 1, при этом глубина щелей достигает поверхности толстого диэлектрика - 7, образуя полупроводниковые столбики - 9 (мезы) n-(p-) типа проводимости, нижняя поверхность которых примыкает к поверхности толстого диэлектрика - 7, на боковой поверхности столбиков - 9, примыкающей к щелям - 8, расположен тонкий диэлектрик (оксид кремния) - 10, изолирующий столбики друг от друга, а в объеме щелей расположен материал радиоактивного изотопа - 5, на боковых поверхностях столбиков - 9, примыкающих к щелям – 8, расположены p+(n+) области - 3, образующие боковые вертикальные p-n-переходы, на верхней поверхности столбиков расположены диэлектрик - 11 и контактные области - 12 p+(n+) типа к p-n-переходам и контактные области - 13 n+(p+) к столбикам n-(p-) типа проводимости, контактные области соседних столбиков последовательно соединены между собой металлическими проводниками - 14, образуя электрическую схему последовательно соединенных диодов.

Пример конкретной реализации

Технология изготовления преобразователя по изобретению показана на фиг. 3, которая состоит из следующей последовательности технологических операций:

а) проводят термическое окисление обратных сторон кремниевых пластин КЭФ 5 кΩ⋅см с ориентацией (100) - 1 и 6, спекают их со стороны диэлектрика - 7;

- проводят утонение нижней пластины химико-механической полировкой;

- проводят 1-ую фотолитографию и формируют n+ контактный слой - 13 ионным легированием фосфора дозой D=300 мкКл с энергией E=50 кэВ;

- проводят 2-ую фотолитографию и формируют p+ контактный слой - 12 ионным легированием бора дозой D=600 мкКл с энергией E=30 кэВ;

- проводят термический отжиг имплантированной примеси при температуре T=1050°C t=40 минут;

- выращивают термический оксид - 15 на полупроводниковой пластине при температуре T=950°C t=40 минут толщиной 0,3 мкм;

б) проводят 3-ую фотолитографию и травят глубокие щели - 8 плазмохимическим травлением кремния - Si селективно к оксиду кремния - SiO2 на всю глубину пластины, формируя изолированные кремниевые столбики;

- проводят диффузию бора в боковые поверхности щелей, формируя вертикальные p-n-переходы - 3 при температуре T=900°С t=20 минут;

- удаляют из щелей боросиликатное стекло;

в) проводят тонкое окисление поверхности столбиков (щелей) при температуре Т=850°C t=20 минут до толщины оксида кремния - 10 - SiO2 30 нм;

- затем осаждают электролизом радиоактивный никель - 63Ni - 5;

г) удаляют реактивным ионным травлением никель 63Ni с поверхности пластины;

- проводят осаждение низкотемпературного плазмохимического оксида -11;

- затем проводят 4-ую фотолитографию контактных окон;

д) осаждают металл - алюминий - AL - 14 и проводят 5-ую фотолитографию по разводке алюминия;

- затем режут пластины на отдельные кристаллы - чипы.

Предлагаемый преобразователь может быть реализован на пластинах кремния КЭФ 5 кΩ⋅см с ориентацией (100) по технологии, представленной на фиг. 3. При этом в качестве изотопного источника может быть выбран 63Ni, имеющий большой период времени полураспада (100 лет), испускающий электронное излучение со средней энергией 17 кэВ и максимальной энергией 64 кэВ, практически безопасный для здоровья человека. Такая энергия электронов существенно меньше энергии дефектообразования в кремнии (160 кэВ). При этом глубина поглощения в кремнии электронов со средней энергией 17 кэВ составляет примерно 3,0 мкм, а для 90% бета-излучения поглощение происходит на глубине до 12 мкм. Данные размеры должны соответствовать глубинам залегания p-n-переходов и величине ОПЗ, что достигается на типовых кремниевых структурах.

Следует отметить, что в качестве радиоактивного изотопа могут быть использованы иные материалы, например тритий и т.д.

Принцип действия преобразователя основан на ионизации полупроводникового материала, например кремния, бета-излучением изотопов никеля, трития, стронция, кобальта и т.д. Образующиеся при этом электронно-дырочные пары разделяются полем p-n-перехода в области пространственного заряда (ОПЗ) и создают разность потенциалов на p+ и n+ областях преобразователя (бета-гальваническая ЭДС). При этом часть электронно-дырочных пар может быть собрана полем p-n перехода также в квазинейтральной (КНО) области на расстоянии, равном диффузионной длине.

Техническими преимуществами изобретения являются:

- реализация в одном чипе или пластине высоковольтного источника - ЭДС, что позволяет отказаться от трудоемкой и нетехнологической операции сборки «высоковольтной» батареи (с типовым напряжением для интегральных схем от 5 до 12 В) из отдельных низковольтовых чипов, генерируемое напряжение которых обычно не превышает 100 мВ;

- при производстве высоковольтного преобразователя используется стандартная «микроэлектронная» технология, не требующая резки и шлифовки чипов для получения высокого (стандартного напряжения от 5 до 12 В и выше);

- высокий коэффициент отношения площади принимающих излучение p-n-переходов к объему кремниевого материала, в котором они расположены, что позволяет получать максимальную мощность излучения и соответственно ЭДС на единицу объема преобразователя;

- последовательное соединение пиксель-высоковольтного преобразователя позволяет снизить потери активной энергии на внешнем и внутреннем активном сопротивлении, что дает повышение КПД в системе батарея - нагрузка по сравнению с низковольтным источником ЭДС и делает его перспективным для микроэлектронных и МЭМС применений;

- такой источник ЭДС может обеспечить прямую зарядку аккумулятора при отсутствии солнечных батарей при минимальном ее весе и размерах, что важно, например, для применения в беспилотных летательных аппаратах, взрывоопасных помещениях - шахтах, ночных индикаторах, расположенных в труднодоступных местах, электростимуляторах сердца, для питания биосенсоров и т.д.;

- важным обстоятельством является также то, что срок службы такого преобразователя определяется периодом полураспада радиационного материала, который для 63Ni составляет 100 лет, что более чем достаточно в большинстве применений.


Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
Источник поступления информации: Роспатент

Showing 261-270 of 334 items.
15.06.2019
№219.017.8374

Высокопрочный литейный алюминиевый сплав с добавкой кальция

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный...
Тип: Изобретение
Номер охранного документа: 0002691476
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8d34

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих...
Тип: Изобретение
Номер охранного документа: 0002692003
Дата охранного документа: 19.06.2019
26.06.2019
№219.017.92b2

Установка для измерения характеристик процесса свс неорганических соединений в автоволновом режиме

Изобретение относится к области металлургии, в частности к установкам (устройствам) реакторам для проведения самораспространяющегося высокотемпературного синтеза. Может применяться для синтеза материалов из реакционных смесей, состоящих из твердофазных реагентов или с введением газофазных...
Тип: Изобретение
Номер охранного документа: 0002692352
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.a9e3

Способ изготовления коррозионностойких постоянных магнитов

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим...
Тип: Изобретение
Номер охранного документа: 0002693887
Дата охранного документа: 05.07.2019
11.07.2019
№219.017.b262

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора...
Тип: Изобретение
Номер охранного документа: 0002694118
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d7

Гибридный фотопреобразователь, модифицированный максенами

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами TiCT, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей...
Тип: Изобретение
Номер охранного документа: 0002694086
Дата охранного документа: 09.07.2019
20.08.2019
№219.017.c17f

Способ получения слитков из алюмоматричного композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении слитков различными методами литья, в частности методом полунепрерывного вертикального литья. Способ получения слитков из алюминиевых сплавов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002697683
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c180

Противопригарная краска для песчаных форм и стержней, используемых при литье магниевых сплавов

Изобретение относится к области литейного производства и может быть использовано для получения фасонных отливок, в т.ч. крупногабаритных (более 1000 мм) в разовых песчаных формах из холоднотвердеющих смесей с синтетическими связующими (ХТС). Противопригарная краска содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002697680
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c19e

Способ переработки марганецсодержащего сырья

Изобретение относится к черной металлургии и может быть использовано при переработке марганецсодержащего сырья. Процесс выплавки ведется непрерывно в трехзонной печи. В первой зоне расплавляют марганецсодержащее сырье, подавая кислород и углеродсодержащие материалы. При этом между плавильной...
Тип: Изобретение
Номер охранного документа: 0002697681
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c1a5

Способ изготовления керамических форм для литья по выплавляемым моделям

Изобретение относится к литейному производству, а именно к способу изготовления керамических форм, предназначенных для литья изделий с равноосной структурой, применяемых преимущественно в качестве лопаток газотурбинных двигателей (ГТД). Способ включает формирование на модельном блоке по меньшей...
Тип: Изобретение
Номер охранного документа: 0002697678
Дата охранного документа: 16.08.2019
Showing 191-194 of 194 items.
19.04.2019
№219.017.3171

Интегральная ячейка детектора излучения на основе биполярного транзистора с сетчатой базой

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Пиксельная биполярная структура с сетчатой базой, согласно изобретению, содержит полупроводниковую подложку, в которой расположена область коллектора 1-го типа проводимости, на которой имеется электрод...
Тип: Изобретение
Номер охранного документа: 0002427942
Дата охранного документа: 27.08.2011
11.07.2019
№219.017.b262

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора...
Тип: Изобретение
Номер охранного документа: 0002694118
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d7

Гибридный фотопреобразователь, модифицированный максенами

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами TiCT, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей...
Тип: Изобретение
Номер охранного документа: 0002694086
Дата охранного документа: 09.07.2019
01.07.2020
№220.018.2d27

Способ измерения переходного контактного сопротивления омического контакта

Изобретение относится к области технологии изготовления изделий микроэлектроники, в частности к контролю контактных сопротивлений омических контактов к полупроводниковым слоям на технологических этапах производства. Сущность: способ измерения переходного контактного сопротивления, заключающийся...
Тип: Изобретение
Номер охранного документа: 0002725105
Дата охранного документа: 29.06.2020
+ добавить свой РИД