×
25.08.2017
217.015.a2e7

Результат интеллектуальной деятельности: Модифицированный наноуглеродом электролит анодирования детали из алюминия или его сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и нанотехнологии. Электролит содержит серную кислоту, композицию «ЭКОМЕТ-А200» и порошок углеродного наноматериала «Таунит», введенный с помощью ультразвукового диспергатора, при этом он содержит компоненты при следующем соотношении, г/л: серная кислота 180-220, композиция «ЭКОМЕТ-А200» 26-28, углеродный наноматериал «Таунит» от 0,005 до менее 0,03. Технический результат: упрощение технологии увеличения микротвердости алюминиевых поверхностей. 2 табл., 1 пр.

Изобретение относится к области гальванотехники и нанотехнологии, а именно к способам получения модифицированных наноматериалом электрохимических оксидных покрытий.

Традиционными технологическими процессами, используемыми для упрочнения алюминиевых образцов, являются: лужение, фосфатирование, графитизация, никелерование и анодирование. Среди представленных наиболее перспективным с точки зрения технологичности и себестоимости является анодирование поверхности. Анодирование производят, как правило, в серной, хромовой или фосфатной кислоте. Высокая токсичность хромовой кислоты не позволяет считать ее использование целесообразным.

Известен способ и фосфорно-кислый электролит анодного оксидирования алюминия и его сплавов с повышенной микротвердостью с использованием наночастиц (Weidmarm, S.K. Modifizierung von Anodisierschichten auf Aluminiumwerkstoffen durch chemische Nanotechnologie / S.K. Weidmarm, W. Furbeth, O. Yezerska, U. Sydow, M. Schneider // Galvanotechnik - 2010. - V. 101 (music). - P. 1728-1744). В результате получаются высокопористые анодные слои с хорошей адгезией. Далее происходит модифицирование верхнего слоя анодной пленки наночастицами SiO2 путем электрофоретического осаждения с использованием ультразвука на полученные покрытия с пропиткой пор.

Недостатком этого способа является техническая сложность реализации способа на практике ввиду требования дополнительного аппаратурного оснащения.

Известен также способ и электролиты серной, щавелевой и сульфосалициловой кислот анодного оксидирования алюминия и его сплавов из растворов с добавлением в них частиц фторопласта (патент РФ № 2078449, C25D 11/08, 11/18, опубл. 27.04.97). Частицы фторопласта при воздействии переменного асимметричного тока входят в поры покрытия, тем самым изменяя свойства покрытия.

Основным недостатком данного способа является недостаточно высокая микротвердость и износостойкость из-за внедрения в микропоры мягких частиц фторопласта.

Наиболее близким аналогом изобретения является способ нанесения оксидного покрытия на деталь из алюминия и его сплава, включающий анодирование детали в электролите, содержащем частицы углеродного наноматериала «Таунит», при этом осуществляют прикрепление множества частиц на алюминиевую поверхность, с использованием связывающей среды - оксидных гальванических покрытий, и также электролит для нанесения оксидного поркытия на деталь из алюминия или его сплава, содержащий частицы углеродного наноматериала «Таунит», введенные с помощью ультразвукового диспергатора, при следующем соотношении компонентов, г/л:

серная кислота 190-210
композиция «ЭКОМЕТ-А200» 26-28
углеродный наноматериал «Таунит» 0,1-1,6

раскрытые в RU 2511806 С1, опубл. 10.04.2014.

Недостатком данного способа является недостаточно высокая микротвердость и износостойкость из-за высокой коагуляции микрочастиц материала «Таунит» и осаждения их на поверхность с образованием оксидных выпуклостей.

Ввиду перечисленных недостатков эти способы не нашли достаточного применения в производстве.

Задачей изобретения является повышение микротвердости оксидного слоя алюминия за счет использования электролита анодирования, модифицированного наноматериалом.

Техническим результатом изобретения является упрощение технологии увеличения микротвердости алюминиевых поверхностей.

Поставленная задача решается путем введения в электролит анодирования частиц наноматериала углеродных нанотрубок (УНТ) «Таунит» с помощью ультразвукового диспергатора. Таким образом, электролит анодирования алюминия: 180-220 г/л серной кислоты, 26-28 г/л композиции «ЭКОМЕТ-А200», от 0,005 до менее 0,03 г/л порошка УНТ «Таунит». После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают в ультразвуковом диспергаторе с частотой 22 кГц. Интенсивность ультразвуковой обработки: амплитуда 80 мкм; интенсивность звука 786 Вт/см2.

Задача повышения микротвердости получаемых покрытий решается путем прикрепления множества частиц наноматериала на алюминиевую поверхность, используя связывающую среду, причем в качестве частиц наноматериала используют УНТ «Таунит», а в качестве связывающей среды - оксидные электрохимические покрытия.

В качестве нанодисперсного материала используют фуллереноподобные углеродные нанотрубки (УНТ) - наноуглеродный материал, зарегистрированный под торговой маркой «Таунит», который производится в ООО «НаноТехЦентр». УНТ «Таунит» представляет собой длинные полые волокна, состоящие их графеновых слоев фуллереноподобной конструкции (табл. 1).

Композиция «ЭКОМЕТ-А200» представляет собой саморегулирующий сернокислотный электролит анодирования для формирования бесцветных пленок на алюминии и его сплавах, которое предусматривает те же стадии обработки, что и обычный процесс анодирования в сернокислотном электролите. Композицию «ЭКОМЕТ-А200» можно вводить в действующий сернокислотный электролит анодирования.

Нанесение оксидного покрытия реализуется при последовательном выполнении следующих этапов:

1. Подготовка растворов для обезжиривания, травления, осветления, анодного оксидирования и уплотнения.

Водный раствор для обезжиривания состоит из 35-45 г/л тринатрийфосфата, 35-45 г/л кальцинированной соды, 10-14 г/л композиции «ЭКОМЕТ-012у».

Водный раствор для травления состоит из 140 г/л плавиковой кислоты (HF), 680 г/л азотной кислоты (HNO3).

Водный раствор для осветления состоит из 145-155 г/л серной кислоты, 3-5 г/л композиции «ЭКОМЕТ-А180».

Водный раствор для анодного оксидирования состоит из 180-220 г/л серной кислоты, 26-28 г/л композиции «ЭКОМЕТ-А200», от 0,005 до менее 0,03 г/л порошка УНТ «Таунит». Перемешивание порошка производится в ультразвуковом диспергаторе в течение 4-6 минут.

Водный раствор для уплотнения состоит из 90-110 мг/л композиции «ЭКОМЕТ-А210».

2. Подогрев раствора для обезжиривания до температуры 60-70°C и обезжиривание образца в нем в течение 10-12 минут.

3. Промывка образца в теплой воде (40-60°C) в течение 1-2 минут.

4. Промывка образца в холодной воде (20-25°C) в течение 1-2 минут.

5. Травление образца при температуре 20-25°C в течение 4-5 минут.

6. Промывка образца в теплой воде (40-60°C) в течение 1-2 минут.

7. Промывка образца в холодной воде (20-25°C) в течение 1-2 минут.

8. Осветление образца при температуре 20-25°C в течение 4-5 минут.

9. Промывка образца в холодной воде (20-25°C) в течение 1-2 минут.

10. Анодное оксидирование образца при температуре 18-22°C в течение 20-22 минут при силе тока 0,106 А (при этом анодирование выполняется с одной стороны образца).

11. Выдержка образца без тока в электролите (растворе для анодного оксидирования) 30-60 секунд.

12. Промывка образца в холодной воде (20-25°C) в течение 1-2 минут.

13. Уплотнение образца при температуре 20-25°C в течение 15-17 минут.

14. Сушка образца феном при температуре 60-65°C.

Для пояснения изобретения описаны примеры осуществления данного метода.

Пример

Электрохимическое оксидирование проводилось на предварительно подготовленные поверхности основы из алюминия в электролите:

Серная кислота 200 г/л
Композиция «ЭКОМЕТ-А200» 27 г/л
Порошок УНТ «Таунит» 20 мг/л

После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают ультразвуковом с параметрами:

частота 22 кГц
амплитуда 80 мкм
интенсивность звука 786 Вт/см2

При анодировании использовались детали двигателя (корпус головки блока цилиндров, деталь подшипника газораспределительного механизма, днище поршня) внутреннего сгорания автомобиля ВАЗ 21011 из сплавов алюминия: АЛ4, АЛ9 (алюминиевые), AS41, МЛ5 (магниевые), АЛ1, АЛ25, АЛ30, АКЦ, АК10М2Н (алюминиевые).

Процесс проводится при плотности тока 1,5 А/дм2 при температуре 18-22°C в течение 20 минут. Получаемое покрытие беспористое и равномерно распределено по поверхности образца. Толщина покрытия составила 12,1-15,6 мкм.

Измерения микротвердости Нμ проводились прибором ПМТ-3М с ФОМ-16 в соответствии с методикой паспорта прибора при нагрузке 50 г. Полученное покрытие достаточно равномерно распределено по поверхности детали.

В результате проведенных экспериментов выявлено, что при использовании разработанной технологии существенно (более чем на 30%) повышается микротвердость образцов (днища поршня, корпуса головки блока цилиндров, подшипника газораспределительного механизма), в связи с чем детали упрочняются и повышается долговечность их эксплуатации.

Оксидирование детали днища поршня без добавления наноматериала «Таунит» в электролит увеличило микротвердость на 8%. Наилучший результат при добавлении в электролит наноматериала «Таунит» получен при его концентрации 10 мг/л, при этом микротвердость увеличилась на 42% по сравнению с необработанной деталью и на 31% по сравнению с оксидированной деталью с использованием традиционного электролита без добавления наноматериала «Таунит».

Оксидирование детали корпуса головки блока цилиндров (ГБЦ) без добавления наноматериала «Таунит» в электролит увеличило микротвердость на 2,6%. Наилучший результат при добавлении в электролит наноматериала «Таунит» получен при его концентрации 10 мг/л, при этом микротвердость увеличилась на 34% по сравнению с необработанной деталью и на 31% по сравнению с оксидированной деталью с использованием традиционного электролита без добавления наноматериала «Таунит».

Оксидирование детали подшипника газораспределительного механизма (ГРМ) без добавления наноматериала «Таунит» в электролит увеличило микротвердость на 2,7%. Наилучший результат при добавлении в электролит наноматериала «Таунит» получен при его концентрации 10 мг/л, при этом микротвердость увеличилась на 34% по сравнению с необработанной деталью и на 31% по сравнению с оксидированной деталью с использованием традиционного электролита без добавления наноматериала «Таунит».

Приведенные выше результаты экспериментов в обобщенном виде отображены в табл. 2.

Источник поступления информации: Роспатент

Showing 11-20 of 37 items.
20.09.2013
№216.012.6b36

Способ получения углеродных нанотрубок и реактор для их получения

Группа изобретений может быть использована в химической промышленности. В реактор, содержащий корпус 1, на внешней стороне которого расположены нагревательные элементы 2 и теплоизоляция, загружают твердый дисперсный катализатор. Частицы катализатора приводят при температуре каталитического...
Тип: Изобретение
Номер охранного документа: 0002493097
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7278

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода -...
Тип: Изобретение
Номер охранного документа: 0002494961
Дата охранного документа: 10.10.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8c4f

Состав для получения комплексного гранулированного наносорбента

Изобретение относится к созданию гранулированного наносорбента, который может использоваться при очистке водных сред от радионуклидов и других токсичных веществ. Состав для получения сорбента содержит (масс. част.): бентонит - 1, глауконит 2,5, оксихлорид алюминия - 1, а также нитевидный...
Тип: Изобретение
Номер охранного документа: 0002501602
Дата охранного документа: 20.12.2013
10.04.2014
№216.012.b409

Способ повышения теплоотдачи с помощью микротурбулизирующих частиц

Изобретение относится к области теплотехники и гальванотехники и может использоваться в системах повышения теплоотдачи для улучшения характеристик теплоотдачи на различных поверхностях устройства теплопередачи. Это достигается использованием в качестве микротурбулизирующих частиц углеродных...
Тип: Изобретение
Номер охранного документа: 0002511806
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c665

Способ получения углерод-металлического материала каталитическим пиролизом этанола

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении. Катализатор в...
Тип: Изобретение
Номер охранного документа: 0002516548
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
20.09.2014
№216.012.f6b0

Способ модифицирования углеродных нанотрубок

Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10,...
Тип: Изобретение
Номер охранного документа: 0002528985
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
Showing 11-20 of 54 items.
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9e42

Способ получения порошкового сорбента

Изобретение относится к области сорбционной техники, в частности к способу получения сорбентов для очистки воздуха от неорганических одорантов и микроколичеств высокотоксичных органических веществ. Способ включает приготовление пропиточного раствора, пропитку им активного угля, вылеживание,...
Тип: Изобретение
Номер охранного документа: 0002572144
Дата охранного документа: 27.12.2015
10.06.2016
№216.015.4463

Способ получения слоистого пластика

Изобретение относится к области изготовления слоистых пластиков, которые могут быть использованы в авиа- и судостроении. Способ получения слоистого пластика заключается в получении связующего, модифицированного углеродными нанотрубками посредством совместного диспергирования углеродных...
Тип: Изобретение
Номер охранного документа: 0002586149
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c6e3

Способ получения дисперсий углеродных наноматериалов

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера...
Тип: Изобретение
Номер охранного документа: 0002618881
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
26.08.2017
№217.015.e4ed

Строительная композиция и комплексная добавка для строительной композиции

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных, преимущественно бетонных или растворных, смесей в производстве бетонных и железобетонных изделий и конструкций сборного и монолитного строительства и в других производствах....
Тип: Изобретение
Номер охранного документа: 0002626493
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f28d

Сатуратор

Изобретение относится к оборудованию для химической промышленности, а именно к устройствам для насыщения жидкости газом на границе раздела соприкасающихся фаз, когда барботаж газа недопустим. Сатуратор содержит корпус, выполненный в виде конической обечайки, снабженной верхним и нижним...
Тип: Изобретение
Номер охранного документа: 0002637234
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3bb

Наномодификатор строительных материалов

Изобретение относится к добавкам в строительные материалы и может быть использовано при производстве изделий из бетона и железобетона, строительных растворов, отделочных покрытий на предприятиях стройиндустрии. Наномодификатор строительных материалов на цементном связующем, включающий смесь,...
Тип: Изобретение
Номер охранного документа: 0002637246
Дата охранного документа: 01.12.2017
+ добавить свой РИД