×
25.08.2017
217.015.9f56

Результат интеллектуальной деятельности: ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метрологии, в частности к средствам неразрушающего контроля. Внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы в виде эластичных манжет, датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком. Устройство содержит блок питания, приборы ориентации, навигации, блок регистратора, систему измерения пройденного пути в виде трех подпружиненных колес, расположенных под углом 120° друг к другу. Каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа. В гермоконтейнере установлены три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора. Измеритель содержит генератор гармонического сигнала, цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути. Выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты. Технический результат - повышение точности измерения пройденного пути. 6 ил.

Изобретение относится к области неразрушающего контроля нефтегазопроводов, может быть использовано для целей определения дефектов, позиционирования их на трубопроводе и определения пространственных координат с помощью системы ориентации и навигации, а также измерения пройденного внутритрубным инспектирующим снарядом-дефектоскопом расстояния.

Известен внутритрубный снаряд-дефектоскоп, содержащий цилиндрический контейнер, являющийся магнитопроводом, закрепленные на нем в передней и задней частях полюсы постоянного магнита, щетки-магнитопроводы, размещенные в радиальных направлениях между полюсами постоянного магнита и трубопроводом, концентрический ряд ластов, размещенных между полюсами постоянного магнита, в каждом из ластов вмонтированы дефектоскопические датчики, внутри контейнера размещен блок электроники с приборами ориентации и навигации, а также блок источников электрического питания, два колесных одометра, один из которых расположен в задней части контейнера, отличающийся тем, что дополнительно содержит вал с двумя жестко закрепленными колесами, расположенными в задней части контейнера, двигатель, жестко закрепленный на контейнере и соединенный через механическую передачу с валом, два колеса в передней части контейнера, видеокамеру с подсветкой в передней части контейнера, соединенную с блоком электроники, радиоприемник-передатчик, закрепленный на контейнере, при этом второй колесный одометр расположен в передней части контейнера (патент на полезную модель, МПК G01C 21/00, №118739 от 27.04.2012 г.).

Недостатком данного внутритрубного снаряда-дефектоскопа является недостаточная точность измерения пройденного пути, связанная с проскальзыванием колес одометра.

Наиболее близким по технической сущности и достигаемому результату к предложенному устройству является внутритрубный снаряд-дефектоскоп, содержащий цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера, и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами, и закрепленную в задней части гермоконтейнера (патент РФ №2334980 от 23.04.2007 г., МПК G01N 27/83, F17D 5/02, G01B 7/14).

Недостатком данного внутритрубного снаряда-дефектоскопа является недостаточная точность измерения пройденного пути

Указанный внутритрубный снаряд-дефектоскоп снабжен системой измерения пройденного пути, выполненной на основе колесных одометров. Измеритель пройденного пути, выполненный на основе колесного одометра, действие которого основано на измерении оборотов прижимного колеса, практически не может обеспечить длительный контакт с поверхностью исследуемой трубы без проскальзывания колеса. Кроме того, при длительном контакте с поверхностью исследуемой трубы колесо изнашивается, его диаметр уменьшается, что также приводит к ошибке измерения пройденного пути. Все эти факторы приводят к тому, что при обследовании труб большой длины небольшие ошибки измерения пути за счет проскальзывания колеса и(или) за счет его износа приводят к неправильному определению места расположения дефектов трубы.

Техническим результатом изобретения является повышение точности измерения пройденного пути.

Технический результат достигается за счет того, что внутритрубный снаряд-дефектоскоп содержит цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами и закрепленную в задней части гермоконтейнера, при этом система измерения пройденного пути выполнена в виде трех подпружиненных колес, расположенных под углом 120° друг к другу, причем каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора, причем измеритель пройденного содержит генератор гармонического сигнала, последовательно соединенные цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути, при этом выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты.

Сущность изобретения поясняется чертежами, на которых схематически представлено предлагаемое устройство.

На фиг. 1 изображен общий вид внутритрубного снаряда-дефектоскопа.

На фиг. 2 представлена система измерения пройденного пути.

На фиг. 3 представлена блок-схема соединений измерителей пройденного пути с сумматором.

На фиг. 4 изображена блок схема одного измерителя пройденного пути.

На фиг. 5 представлена схема работы преобразователя.

На фиг. 6 изображена эмпирическая зависимость амплитуд флуктуаций сигнала на преобразователе при движении снаряда-дефектоскопа по трубе при разных углах положения преобразователей относительно центральной оси снаряда-дефектоскопа.

Внутритрубный снаряд-дефектоскоп, установленный в трубе 1, содержит цилиндрический гермоконтейнер 2, опорные элементы, включающие в себя переднюю 3 и заднюю 4 эластичные манжеты, установленные на краях гермоконтейнера 2, дефектоскопические датчики 5, расположенные снаружи по периметру гермоконтейнера 2 и соединенные с размещенным внутри гермоконтейнера электронным блоком 6, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами 7 и закрепленную в задней части гермоконтейнера 2, при этом система измерения пройденного пути выполнена в виде трех подпружиненных колес 7, расположенных под углом 120° друг к другу, причем каждое колесо 7 снабжено акустическим преобразователем 8, закрепленным на оси каждого подпружиненного колеса 7 под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере 2 три измерителя пройденного пути 9 и сумматор 10, при этом каждый преобразователь 8 соединен кабелем 11 с входом соответствующего измерителя пройденного пути 9, а выход каждого измерителя пройденного пути 9 соединен с соответствующим входом сумматора 10, выход которого соединен с блоком регистратора, причем измеритель пройденного пути 9 содержит генератор гармонического сигнала 12, последовательно соединенные цифровой измеритель доплеровского сдвига частоты 13, вычислитель скорости движения 14, вычислитель пройденного пути 15, при этом выход генератора гармонического сигнала 12 соединен с преобразователем 8 и входом цифрового измерителя доплеровского сдвига частоты 13.

Устройство работает следующим образом.

Внутритрубный снаряд-дефектоскоп устанавливают в исследуемую трубу 1. Опорные элементы, включающие в себя переднюю 3 и заднюю 4 эластичные манжеты, установленные на краях гермоконтейнера 2, обеспечивают движение внутритрубного снаряда-дефектоскопа в трубе 1 под действием движущейся среды. Подключают источники питания к электронному блоку 6, содержащему блок питания, приборы ориентации, навигации, блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами 7 и закрепленную в задней части гермоконтейнера 2. Дефектоскопические датчики 5, расположенные снаружи по периметру гермоконтейнера 2 и соединенные с размещенным внутри гермоконтейнера 2 электронным блоком 6, в процессе движения внутритрубного снаряда-дефектоскопа в трубе 1 определяют дефекты трубы 1 и подают информацию на блок регистратора.

Одновременно система измерения пройденного пути, выполненная в виде трех подпружиненных колес 7, расположенных под углом 120° друг к другу, причем каждое колесо 7 снабжено акустическим преобразователем 8, закрепленным на оси каждого подпружиненного колеса 7, под углом 30°-60° к центральной оси снаряда-дефектоскопа, дает информацию о пройденном пути в реальном масштабе времени и также подает эту информацию на регистратор. Это позволяет определить координаты дефектов по всему пути внутритрубного снаряда-дефектоскопа в трубе 1. Таким образом, можно не только определить дефекты трубы, но и определить их точное место расположение.

В процессе движения внутритрубного снаряда-дефектоскопа преобразователи 8, закрепленные на осях трех подпружиненных колес 7, установленных под углом 120° друг к другу, перемещаются вместе с снарядом-дефектоскопом.

Три измерителя пройденного пути 9, соединенные с соответствующими тремя преобразователями 8 кабелями 9, вычисляют путь, пройденный внутритрубным снарядом-дефектоскопом. Полученные данные поступают на соответствующий вход сумматора 10 и далее на регистратор электронного блока 6.

Генераторы гармонического сигнала 12 каждого из трех измерителей пройденного пути 9 подают синусоидальное напряжение на соответствующие преобразователи 8. Излученные преобразователями 8 акустические волны попадают на рассеивающую внутреннюю поверхность трубы 1. Отраженные от шероховатостей внутренней поверхности трубы 1 рассеянные акустические волны попадают на приемную поверхность преобразователей 8, создавая дополнительное электрическое напряжение на преобразователях 8, пропорциональное амплитуде звукового давления отраженных рассеянных волн. Одновременно генераторы гармонического сигнала 12 подают синусоидальное напряжение на входы цифровых измерителей доплеровского сдвига частоты 13. В цифровых измерителях доплеровского сдвига частоты 13 проводят преобразование Фурье сигнала, при этом рассеянный сигнал отделяют в пространстве частот от сигнала возбуждения и измеряют величину доплеровского сдвига частоты рассеянного сигнала относительно частоты генератора гармонического сигнала 12. Далее сигнал поступает на вход вычислителя скорости движения 14. Сдвиг частоты рассеянного сигнала однозначно связан со скоростью относительного движения излучателя и стенки трубы. Вычисляют скорость относительного движения по известной формуле:

,

где c - скорость звука;

β - угол между осью преобразователя и рассеивающей поверхностью.

Затем сигнал поступает на вычислитель пройденного пути 15, в котором скорость интегрируют и вычисляют пройденный внутритрубным снарядом-дефектоскопом путь.

После чего сигнал поступает на соответствующий вход сумматора 10.

Рабочая частота генератора гармонического сигнала выбирается из следующих соображений. Амплитуда рассеянных акустических волн зависит от величины шероховатости ξ и от волнового числа k звуковой волны. Для того чтобы рассеянные на шероховатостях звуковые волны имели достаточную (из соображений отношения «сигнал-шум») величину для регистрации, необходимо, чтобы ξ⋅k имели величину, превышающую хотя бы 0.1: , или . Подставляя c=1500 м/сек, величину характерной шероховатости внутренней поверхности трубы ξ=20-10-6 м, получаем: Гц.

Установка расстояния и угла наклона оси преобразователя 8 относительно стенки трубы определяется из необходимости максимально увеличить величину рассеянного акустического сигнала.

Эксперименты показали, что в диапазоне расстояний 20-50 мм и углов 30°-60° преобразователь 8 уверенно принимает рассеянный сигнал от шероховатостей высотой 20-100 мкм. Вне этого диапазона углов рассеянное поле не дает достаточного вклада в полный сигнал. На фиг. 6 показана экспериментальная зависимость флуктуаций полного сигнала, характеризующая именно рассеянный сигнал (нормировка - относительно сигнала флуктуаций при 45°) на преобразователе, от угла наклона при его движении над шероховатой границей. 0° соответствует скользящему направлению излучаемого звука, 90° соответствует нормальному направлению. Видно, что в диапазоне углов 30°-60° значения флуктуаций максимальны.

Внутритрубный снаряд-дефектоскоп, содержащий цилиндрический гермоконтейнер, опорные элементы, включающие в себя переднюю и заднюю эластичные манжеты, установленные на краях гермоконтейнера, дефектоскопические датчики, расположенные снаружи по периметру гермоконтейнера и соединенные с размещенным внутри гермоконтейнера электронным блоком, содержащим блок питания, приборы ориентации, навигации и блок регистратора, систему измерения пройденного пути, снабженную подпружиненными колесами и закрепленную в задней части гермоконтейнера, отличающийся тем, что система измерения пройденного пути выполнена в виде трех подпружиненных колес, расположенных под углом 120° друг к другу, причем каждое колесо снабжено акустическим преобразователем, закрепленным на оси каждого подпружиненного колеса под углом 30°-60° к центральной оси снаряда-дефектоскопа, размещенные в гермоконтейнере три измерителя пройденного пути и сумматор, при этом каждый преобразователь соединен кабелем с входом соответствующего измерителя пройденного пути, а выход каждого измерителя пройденного пути соединен с соответствующим входом сумматора, выход которого соединен с блоком регистратора, причем каждый измеритель пройденного пути содержит генератор гармонического сигнала, последовательно соединенные цифровой измеритель доплеровского сдвига частоты, вычислитель скорости движения, вычислитель пройденного пути, при этом выход генератора гармонического сигнала соединен с преобразователем и входом цифрового измерителя доплеровского сдвига частоты.
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП
Источник поступления информации: Роспатент

Showing 61-70 of 101 items.
16.01.2019
№219.016.b045

Способ калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условиях орбитального полета

Изобретение относится к гироскопической технике, а именно к способам калибровки погрешностей бескарданной инерциальной системы на электростатических гироскопах в условия полета космического аппарата. Способ калибровки погрешностей бескарданной инерциальной системы на электростатических...
Тип: Изобретение
Номер охранного документа: 0002677099
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b072

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры. Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа дополнительно...
Тип: Изобретение
Номер охранного документа: 0002677091
Дата охранного документа: 15.01.2019
07.02.2019
№219.016.b7e1

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ)....
Тип: Изобретение
Номер охранного документа: 0002678959
Дата охранного документа: 04.02.2019
08.03.2019
№219.016.d350

Способ определения класса шумящей цели и дистанции до неё

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для обнаружения подводных объектов и надводных объектов по их шумоизлучению. Технический результат - повышение достоверности классификации и точности определения дистанции шумящей...
Тип: Изобретение
Номер охранного документа: 0002681432
Дата охранного документа: 06.03.2019
11.03.2019
№219.016.d5ff

Способ определения класса шумящей цели и дистанции до неё

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям (ШПС), предназначенным для обнаружения подводных лодок (ПЛ) и надводных кораблей (НК) по их шумоизлучению. Достигаемый технический результат - повышение достоверности классификации и точности...
Тип: Изобретение
Номер охранного документа: 0002681526
Дата охранного документа: 07.03.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.edcc

Полиуретановый гель

Изобретение относится к связующим заливочным составам, в частности к полиуретановым гелям, и предназначено для использования в гидроакустических системах. Композиция может быть также использована в радиоэлектронике, электротехнике. Полиуретановый гель получен путем взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002683098
Дата охранного документа: 26.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
20.04.2019
№219.017.3580

Способ определения класса шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения подводных и надводных объектов. Технический результат - обеспечение достоверности классификации целей на классы «шум естественного происхождения» и «шум...
Тип: Изобретение
Номер охранного документа: 0002685419
Дата охранного документа: 18.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
Showing 51-57 of 57 items.
21.12.2019
№219.017.efe3

Устройство для активного гашения акустических шумов в вентиляционных системах

Изобретение относится к средствам защиты от акустического шума, вызванного работающими системами вентиляции в жилых помещениях и в подвижных объектах. Техническим результатом изобретения является повышение эффективности гашения шума в вентиляционных системах за счет снижения интенсивности...
Тип: Изобретение
Номер охранного документа: 0002709606
Дата охранного документа: 18.12.2019
22.07.2020
№220.018.356a

Устройство обнаружения дефектов в сварных швах в процессе сварки

Использование: для обнаружения дефектов в сварных швах в процессе сварки. Сущность изобретения заключается в том, что устройство обнаружения дефектов в сварных швах в процессе сварки содержит измерительный канал, включающий установленный вблизи сварного шва преобразователь акустической эмиссии...
Тип: Изобретение
Номер охранного документа: 0002727065
Дата охранного документа: 17.07.2020
12.04.2023
№223.018.42b7

Способ обнаружения и локализации повреждений в тонкостенных конструкциях с помощью волн лэмба

Использование: для обнаружения и локализации повреждений в тонкостенных конструкциях. Сущность изобретения заключается в том, что на неповрежденную конструкцию с помощью фиксирующего устройства монтируют раму с 8-ю пьезоэлектрическими преобразователями (ПП), установленными в вершинах квадрата и...
Тип: Изобретение
Номер охранного документа: 0002757056
Дата охранного документа: 11.10.2021
12.04.2023
№223.018.45c5

Бесконтактное устройство продольного намагничивания для внутритрубной дефектоскопии трубопроводов

Изобретение относится к области неразрушающего контроля. Бесконтактное устройство продольного намагничивания для внутритрубной дефектоскопии трубопроводов содержит магнитопровод, имеющий средний участок, выполненный в форме цилиндра, и концевые участки, выполненные в форме усеченных конусов,...
Тип: Изобретение
Номер охранного документа: 0002745013
Дата охранного документа: 18.03.2021
15.05.2023
№223.018.5b79

Способ измерения магнитного курса судна в высоких широтах

Изобретение относится к области навигационного приборостроения. Сущность изобретения заключается в том, что осуществляют установку на котелок магнитного компаса, закрепленного в кардановом подвесе, в качестве датчика угловой скорости с вертикальной осью чувствительности микромеханический...
Тип: Изобретение
Номер охранного документа: 0002763685
Дата охранного документа: 30.12.2021
15.05.2023
№223.018.5bcf

Многоканальная волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии

Использование: для детектирования и измерения параметров сигналов акустической эмиссии посредством волоконно-оптической системы. Сущность изобретения заключается в том, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных...
Тип: Изобретение
Номер охранного документа: 0002752133
Дата охранного документа: 23.07.2021
16.05.2023
№223.018.6158

Волоконно-оптический кольцевой датчик акустической эмиссии

Группа изобретений относится к волоконно-оптическому датчику и способу его изготовления. Заявленный датчик состоит из двух катушек с оптическим волокном, расположенных одна над другой и механически соединенных между собой эластичным герметиком, при этом каждая катушка подключена свободным...
Тип: Изобретение
Номер охранного документа: 0002741270
Дата охранного документа: 22.01.2021
+ добавить свой РИД