×
25.08.2017
217.015.9f4f

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ ЖИДКОСТИ ИЛИ ГАЗА НА ЭЛЕКТРОПРОВОДЯЩЕЙ БУМАГЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Съемный прямоугольный лист электропроводящей бумаги без выреза или произвольный лист из набора съемных прямоугольных листов электропроводящей бумаги с вырезами по форме поперечного сечения исследуемого тела раздельно установлены на прямоугольном планшете. На вырез в листе электропроводящей бумаги устанавливается соответствующее лекало из набора съемных лекал, изготовленных из диэлектрика с цифровой разметкой по периметру и совпадающих по размеру и форме с соответствующими вырезами на съемных прямоугольных листах электропроводящей бумаги. Съемный прямоугольный лист электропроводящей бумаги прижимается съемными электродами, расположенными на противоположных сторонах прямоугольного листа и соединенными с источником постоянного тока. Измерение потенциалов на электропроводящей бумаге в соответствующих точках цифровой разметки лекала осуществляется вольтметром с большим входным сопротивлением, вводы которого соединены с иглами двойного зонда. Техническим результатом изобретения является моделирование уравнения Бернулли на электропроводящей бумаге. 8 ил.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних специальных учебных заведениях по курсу физики для получения и углубления знаний физических законов и явлений.

Известна установка для исследования движения жидкости, основанная на уравнении Бернулли (Т.К. Трофимова. Сборник задач по курсу физики для втузов. - М.: «ОНИКС 21 век», 2003, с. 64, рис. 32). Она содержит горизонтальную трубу переменного сечения, по которой протекает вода. На данной установке определяется массовый расход воды с применением уравнения Бернулли. На ней можно провести натурный эксперимент, но эта установка сложна в эксплуатации и не мобильна, ее нельзя применить для дистанционного обучения при заочной форме обучения.

Известна установка для моделирования процессов гидродинамики с применением стационарного электрического поля на электропроводящей бумаге (ЭПБ) (Г.А. Рязанов. Опыты и моделирование при изучении электромагнитного поля. - М.:«Наука», 1966, с. 48, рис. 36). На этой установке моделируют обтекание судна в опытном бассейне, обтекание крыла самолета в аэродинамической трубе и т.п. Эта установка позволяет заменить сложное исследование с применением уравнения Бернулли простым экспериментом на ЭПБ, удобным для дистанционного обучения. Моделирование с применением стационарного электрического поля на ЭПБ отличается большой наглядностью и возможностью построения всей картины поля. При этом не уменьшается познавательная результативность обучения. На этой установке можно продемонстрировать электрическое поле и процесс огибания потока жидкости (газа), но нельзя измерить потенциалы на ЭПБ, а по ним величины, характеризующие движение жидкости (газа).

Наиболее близкой к предлагаемой установке является установка (прототип), где моделируется электрическое поле на ЭПБ (Г.А. Рязанов. Опыты и моделирование при изучении электромагнитного поля. М.:«Наука», 1966, с. 75, рис. 71). Она содержит прямоугольный планшет; прямоугольный лист ЭПБ без выреза, который может быть установлен на прямоугольном планшете; источник постоянного тока и двойной зонд.

На этой установке используется только прямоугольный лист ЭПБ без выреза и несъемные электроды, подключенные к источнику постоянного тока. Измерения потенциалов электрического поля проводятся с помощью компенсационной схемы, которая требует затрат значительного времени при проведении эксперимента и обладает низкой точностью измерений.

Техническим результатом изобретения является расширение функциональных возможностей, моделирование уравнения Бернулли на электропроводящей бумаге и повышение точности проведения эксперимента.

Указанный технический результат достигается тем, что в известную установку для моделирования движения жидкости или газа на электропроводящей бумаге, содержащую прямоугольный планшет, съемный прямоугольный лист электропроводящей бумаги без выреза, который установлен на прямоугольном планшете, источник постоянного тока и двойной зонд, согласно изобретению, введены набор съемных прямоугольных листов электропроводящей бумаги с вырезами по форме поперечного сечения исследуемых тел, каждый лист которого в отдельности имеет возможность размещения на прямоугольном планшете, набор съемных лекал, изготовленных из диэлектрика с цифровой разметкой по периметру лекала и совпадающих по размеру и форме с вырезами на соответствующих листах набора съемных прямоугольных листов электропроводящей бумаги с вырезами, при этом каждое лекало в отдельности имеет возможность установки на соответствующий вырез электропроводящей бумаги на прямоугольном планшете, съемные электроды, расположенные на противоположных сторонах съемного прямоугольного листа электропроводящей бумаги и соединенные с источником постоянного тока, вольтметр с большим входным сопротивлением, вводы которого соединены с иглами двойного зонда, крепления съемных электродов и крепления съемных лекал, установленные на прямоугольном планшете.

На фиг. 1 изображен прототип; на фиг. 2 - общий вид предлагаемой установки, на фиг. 3-8 - чертежи, поясняющие принцип ее работы.

Предлагаемая установка содержит: 1 - прямоугольный планшет; 2 - съемный прямоугольный лист электропроводящей бумаги без выреза; 3 - набор съемных прямоугольных листов электропроводящей бумаги с вырезами; 4 - съемные электроды; 5 - крепления съемных электродов; 6 - источник постоянного тока; 7 - вольтметр с большим входным сопротивлением; 8 - двойной зонд; 9 - набор съемных лекал; 10 - крепления съемных лекал.

Рассмотрим теоретические положения, которые легли в основу при создании предлагаемой установки. Она позволяет изучить уравнение Бернулли путем моделирования на ЭПБ стационарного электрического поля.

При определенных условиях поле вектора скорости (фиг. 3) в идеальной жидкости или газе (далее - жидкости) аналогично полю вектора (фиг. 4) стационарного электрического поля на ЭПБ. Наличие этой математической аналогии позволяет изучать поле вектора скорости в потоке жидкости на электрических моделях. Будем полагать, что исследуемое тело находится в неподвижном состоянии, а жидкость движется.

Если пренебречь гидростатическим давлением, тогда давление pi жидкости на поверхности исследуемого тела определяется по уравнению Бернулли:

где ρ - плотность жидкости; υi - скорость течения жидкости в i-х точках на поверхности тела; υ0 и р0 - соответственно скорость и давление в невозмущенном потоке; i=1, 2,..., N; N - число точек на контуре поперечного сечения тела.

Введем безразмерное избыточное давление которое получим из выражения (1):

где - относительная скорость.

Значения величин в соответствующих точках геометрически подобных тел будут равны.

Так как твердое тело непроницаемо для жидкости, то на его поверхности нормальная составляющая вектора скорости жидкости равна нулю Это соответствует стационарному электрическому полю на поверхности раздела между проводящей средой и диэлектриком

Моделью плоского течения жидкости может служить стационарное электрическое поле в прямоугольном листе ЭПБ, имеющем отверстие, геометрически подобное профилю этого тела. Линии вектора обходят контур тела так же, как струи идеальной жидкости огибают погруженное в нее тело.

На фиг. 5-8 изображены в качестве примера листы ЭПБ с вырезами. На фиг. 5 показана картина модели обтекания симметричного тела, на фиг. 6 - модель потока для несимметричного тела, на фиг. 7 показана модель для тела каплевидной формы. На фиг. 8 показана модель горизонтальной трубы переменного сечения, на которой заштрихованная площадь также показывает вырез. На этой модели можно экспериментально проверить теорему о неразрывности струи.

Чтобы установить количественно соответствие между натурой и моделью, воспользуемся безразмерными величинами. При этом скорости частиц жидкости нужно отнести к скорости набегающего потока а значения вектора - к напряженности невозмущенного стационарного электрического поля

Значения соответственных безразмерных величин в соответственных точках модели и натуры будут равны υ00 и, следовательно, измерения на электрической модели позволяют находить скорость в соответственных точках потока, причем и размеры тела, и скорости набегающего потока могут быть произвольными: υ=υ0υ0=E0υ0.

Таким образом, по данным, полученным на электрической модели, можно найти распределение избыточного давления на поверхности исследуемого тела:

Выражение (3) можно представить в другом виде. Для этого заменим напряженность невозмущенного электрического поля приближенной формулой

где Δϕ0 - разность потенциалов на ЭПБ, соответствующая области невозмущенного электрического поля; Δl - расстояние между иглами двойного зонда.

Обозначим напряженность электрического поля в i-й точке контура исследуемого тела (фиг. 5) Здесь Δϕti+1i, при i=1, 2,..., N-1; ΔϕN1N. Тогда относительная напряженность электрического поля в i-й точке будет:

Подставляя последнее выражение в формулу (3), получим окончательное выражение для определения избыточного давления на поверхности исследуемого тела:

Таким образом, для вычисления избыточного давления на поверхности исследуемого тела необходимо с помощью двойного зонда измерить в i-х точках разности потенциалов и разделить их на разность потенциалов Δϕ0, соответствующую области невозмущенного электрического поля.

На фиг. 8 показаны все величины, необходимые для экспериментального подтверждения теоремы о неразрывности струи:

Учитывая, что υ11, υ00, а также площадь поперечного сечения трубы и получим экспериментальную формулу для проверки теоремы о неразрывности струи:

Здесь Δϕ1 и Δϕ0 - разности потенциалов, измеренные соответственно в первой и нулевой точках трубы, а d1 и d0 - диаметры соответственно в первой и нулевой точках трубы.

Рассмотрим взаимодействие элементов в предлагаемой установке (фиг. 2). Она включает прямоугольный планшет 1, на котором может быть установлен съемный прямоугольный лист ЭПБ без выреза 2 или произвольный лист из набора съемных прямоугольных листов ЭПБ с вырезами 3. Вырезы сделаны на каждом листе по форме поперечного сечения исследуемого тела.

На противоположных сторонах съемного прямоугольного листа ЭПБ без выреза 2 или произвольного листа из набора съемных прямоугольных листов ЭПБ с вырезами 3 установлены съемные электроды 4, которые плотно прижимают лист ЭПБ 2 или произвольный лист из набора 3 с помощью креплений съемных электродов 5 к прямоугольному планшету 1. Съемные электроды 4 соединены с источником постоянного тока 6, под действием которого в листе ЭПБ 2 или в произвольном листе из набора 3 протекает ток и в них создается стационарное электрическое поле.

Для измерения разности потенциалов электрического поля в нужных точках листа ЭПБ, установленного на прямоугольном планшете 1, установка содержит вольтметр с большим входным сопротивлением 7, вводы которого соединены с иглами двойного зонда 8. Иглы двойного зонда 8 расположены на расстоянии Δl друг от друга (см. фиг. 5). Большое входное сопротивление вольтметра необходимо для того, чтобы при касании двойным зондом 8 к листу ЭПБ не было ответвления тока в вольтметр и, соответственно, искажения строения электрического поля.

Установка содержит набор съемных лекал 9, изготовленных из диэлектрика с цифровой разметкой по периметру лекала. Каждое лекало совпадает по размеру и форме с вырезами на соответствующих листах из набора съемных прямоугольных листов ЭПБ с вырезами 3. Цифровая разметка на лекале сделана в соответствии с расстоянием Δl между иглами двойного зонда 8.

Измерение разности потенциалов в требуемых точках установленного лекала осуществляется прикосновением игл двойного зонда 8 к соответствующему листу ЭПБ рядом с цифровой разметкой на лекале (см. фиг. 5).

Установленное лекало прижимается к прямоугольному планшету 1 с помощью креплений съемных лекал 10.

Рассмотрим, каким образом на предлагаемой установке определяется избыточное давление Для этого выбираем из набора трех съемных прямоугольных листов ЭПБ с вырезами требуемый лист, устанавливаем его на прямоугольном планшете 1 и прижимаем с помощью креплений съемных электродов 5 съемные электроды 4 к прямоугольному планшету 1. Из набора съемных лекал 9 выбираем лекало, соответствующее исследуемому телу и вырезу на выбранном листе ЭПБ. Устанавливаем лекало на вырез и прижимаем его к прямоугольному листу ЭПБ 1 с помощью крепления съемных лекал 10. С помощью двойного зонда 8 с подключенным к нему вольтметром 7 измеряем сначала разность потенциалов Δϕ0 в области невозмущенного электрического поля (например, вблизи съемных электродов 4). Затем в каждой точке лекала находим разности потенциалов Δϕi (i=1, 2,..., N), где N - число точек на лекале. И, наконец, по формуле (4) рассчитываем избыточное давление

Экспериментальную проверку теоремы о непрерывности струи жидкости проводим следующим образом. Устанавливаем на прямоугольный планшет 1 лист из набора 3 и лекала из набора съемных лекал 9, которые соответствуют трубе разного диаметра d0 и d1 (см. фиг. 8). С помощью линейки измеряем на листе ЭПБ величины d0 и d1. С помощью двойного зонда 8 с подключенным к нему вольтметром 7 измеряем на ЭПБ разности потенциалов Δϕ0 и Δϕ1 соответственно в окрестности диаметров d0 и d1. По результатам измерений по формуле (6) проверяем равенство.

Установка для моделирования движения жидкости или газа на электропроводящей бумаге, содержащая прямоугольный планшет, съемный прямоугольный лист электропроводящей бумаги без выреза, который установлен на прямоугольном планшете, источник постоянного тока и двойной зонд, отличающаяся тем, что в нее введены набор съемных прямоугольных листов электропроводящей бумаги с вырезами по форме поперечного сечения исследуемых тел, каждый лист которого в отдельности имеет возможность размещения на прямоугольном планшете, набор съемных лекал, изготовленных из диэлектрика с цифровой разметкой по периметру лекала и совпадающих по размеру и форме с вырезами на соответствующих листах набора съемных прямоугольных листов электропроводящей бумаги с вырезами, при этом каждое лекало в отдельности имеет возможность установки на соответствующий вырез электропроводящей бумаги на прямоугольном планшете, съемные электроды, расположенные на противоположных сторонах съемного прямоугольного листа электропроводящей бумаги и соединенные с источником постоянного тока, вольтметр с большим входным сопротивлением, вводы которого соединены с иглами двойного зонда, крепления съемных электродов и крепления съемных лекал, установленные на прямоугольном планшете.
УСТАНОВКА ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ ЖИДКОСТИ ИЛИ ГАЗА НА ЭЛЕКТРОПРОВОДЯЩЕЙ БУМАГЕ
УСТАНОВКА ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ ЖИДКОСТИ ИЛИ ГАЗА НА ЭЛЕКТРОПРОВОДЯЩЕЙ БУМАГЕ
УСТАНОВКА ДЛЯ МОДЕЛИРОВАНИЯ ДВИЖЕНИЯ ЖИДКОСТИ ИЛИ ГАЗА НА ЭЛЕКТРОПРОВОДЯЩЕЙ БУМАГЕ
Источник поступления информации: Роспатент

Showing 191-200 of 642 items.
27.12.2016
№216.013.9d5e

Способ каскадно-конвейерного аналого-цифрового преобразования

Изобретение относится к аналого-цифровому преобразованию и может быть использовано при построении аналого-цифровых преобразователей для высокоточных исследований быстропротекающих процессов. Техническим результатом является повышение точности и сокращение времени аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002571916
Дата охранного документа: 27.12.2015
27.12.2016
№216.013.9e8c

Опорно-поворотное устройство преимущественно телескопа

Изобретение относится к оптическому приборостроению и может быть использовано для больших телескопов с альт-азимутальной монтировкой. Опорно-поворотное устройство (ОПУ) содержит основание, вилку с полым штырем, установленную на основании с возможностью поворота относительно азимутальной оси,...
Тип: Изобретение
Номер охранного документа: 0002572218
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f37

Способ управления автономной системой электропитания космического аппарата

Предполагаемое изобретение относится к электротехнике, а именно к автономным системам электропитания (СЭП) космических аппаратов (КА), использующим в качестве первичных источников энергии батареи фотоэлектрические (БФ), а в качестве накопителей энергии - аккумуляторные батареи (АБ). Задачей...
Тип: Изобретение
Номер охранного документа: 0002572396
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a295

Способ помехоустойчивого кодирования речевых сигналов в цифровой системе радиосвязи

Изобретение относится к области электросвязи и может быть использовано для построения систем радиосвязи. Технический результат - исключение увеличения информационной скорости цифрового канала радиосвязи. Способ помехоустойчивого преобразования речевых сигналов в цифровой системе радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002573263
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a2bf

Способ обнаружения пожарной опасности в отсеке подводной лодки

Изобретение относится к области судостроения, конкретнее - к автоматизации процессов обнаружения пожарной опасности на подводных лодках. Осуществляют контроль процентного содержания кислорода в воздушной среде отсека подводной лодки и при повышении процентного содержания кислорода выше...
Тип: Изобретение
Номер охранного документа: 0002573305
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcbe

Устройство для генерации шаровой молнии

Изобретение относится к области электротехники, конкретно к плазменным источникам электрической энергии, использующим воду и/или дымовые (СО - 80%) газы в качестве рабочего вещества. Устройство для генерации шаровой молнии содержит электроразрядную камеру и устройство активации рабочего...
Тип: Изобретение
Номер охранного документа: 0002573820
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c273

Клапан регулирования расхода газа

Изобретение относится к области машиностроения и направлено на совершенствование конструкций клапанов, предназначенных для управления вектором тяги летательных аппаратов. Клапан регулирования расхода газа состоит из корпуса с входным и выходным патрубками, седла, заслонки и вала,...
Тип: Изобретение
Номер охранного документа: 0002574779
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c3d4

Способ получения авиационного бензина б-100/130

Изобретение описывает способ получения авиационного бензина Б-100/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, характеризующийся тем, что в качестве основы...
Тип: Изобретение
Номер охранного документа: 0002574034
Дата охранного документа: 27.01.2016
20.02.2016
№216.014.cf78

Способ калибровки приемных радиоканалов радиоинтерферометра и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в радиоинтерферометрах и радиопеленгаторах-дальномерах сверхвысокочастотного (СВЧ). Достигаемый технический результат - повышение точности формирования базы калибровочных данных и сокращение в два раза необходимого количества...
Тип: Изобретение
Номер охранного документа: 0002575209
Дата охранного документа: 20.02.2016
20.06.2016
№217.015.0336

Межотсечная переборка подводного технического средства

Изобретение относится к области судостроения и касается конструкции подводных технических средств. Предложена межотсечная переборка подводного технического средства, которая содержит безнаборное полотно, прикрепленное к прочному корпусу и состоящее из внутреннего сферического участка и...
Тип: Изобретение
Номер охранного документа: 0002587742
Дата охранного документа: 20.06.2016
Showing 191-200 of 361 items.
27.01.2016
№216.014.bcbe

Устройство для генерации шаровой молнии

Изобретение относится к области электротехники, конкретно к плазменным источникам электрической энергии, использующим воду и/или дымовые (СО - 80%) газы в качестве рабочего вещества. Устройство для генерации шаровой молнии содержит электроразрядную камеру и устройство активации рабочего...
Тип: Изобретение
Номер охранного документа: 0002573820
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c273

Клапан регулирования расхода газа

Изобретение относится к области машиностроения и направлено на совершенствование конструкций клапанов, предназначенных для управления вектором тяги летательных аппаратов. Клапан регулирования расхода газа состоит из корпуса с входным и выходным патрубками, седла, заслонки и вала,...
Тип: Изобретение
Номер охранного документа: 0002574779
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c3d4

Способ получения авиационного бензина б-100/130

Изобретение описывает способ получения авиационного бензина Б-100/130 на основе бензина, содержащего компоненты каталитического риформинга, изомеризации, алкилирования с добавлением антиокислительной присадки, тетраэтилсвинца и красителя, характеризующийся тем, что в качестве основы...
Тип: Изобретение
Номер охранного документа: 0002574034
Дата охранного документа: 27.01.2016
20.02.2016
№216.014.cf78

Способ калибровки приемных радиоканалов радиоинтерферометра и устройство для его реализации

Изобретение относится к радиотехнике и может быть использовано в радиоинтерферометрах и радиопеленгаторах-дальномерах сверхвысокочастотного (СВЧ). Достигаемый технический результат - повышение точности формирования базы калибровочных данных и сокращение в два раза необходимого количества...
Тип: Изобретение
Номер охранного документа: 0002575209
Дата охранного документа: 20.02.2016
20.06.2016
№217.015.0336

Межотсечная переборка подводного технического средства

Изобретение относится к области судостроения и касается конструкции подводных технических средств. Предложена межотсечная переборка подводного технического средства, которая содержит безнаборное полотно, прикрепленное к прочному корпусу и состоящее из внутреннего сферического участка и...
Тип: Изобретение
Номер охранного документа: 0002587742
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0357

Ледокольное судно

Изобретение относится к области судостроения, а именно к ледокольным судам и судам ледового класса. Предложено ледокольное судно, содержащее охлаждающий его энергетическую установку контур и корпус с ледовым поясом, также в него включены тепловые трубы и тепловой насос, содержащий заполненный...
Тип: Изобретение
Номер охранного документа: 0002587744
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.03a5

Способ диагностирования датчика измерения

Изобретение относится к способам диагностирования датчиков измерения. Предложенный способ заключается в том, что сигнал с выхода диагностируемого датчика сравнивают с контрольными типичными сигналами. При этом физическую величину, измеряемую посредством диагностируемого датчика, дополнительно...
Тип: Изобретение
Номер охранного документа: 0002587635
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.050a

Устройство для разделения всплывающей камеры с подводным техническим средством

Изобретение относится к аварийно-спасательному оборудованию подводных технических средств. Предложено устройство для разделения всплывающей камеры с подводным техническим средством, которое содержит комингсы всплывающей камеры и подводного технического средства, образующие комингс-площадку,...
Тип: Изобретение
Номер охранного документа: 0002587741
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8b

Способ сложения мощности радиопередатчиков

Изобретение относится к радиотехнике и может использоваться в передающих центрах связи. Достигаемый технический результат - повышение уровня сигнала канала связи, требующего восстановления. Способ сложения мощности радиопередатчиков характеризуется тем, что используются широкополосные мосты...
Тип: Изобретение
Номер охранного документа: 0002580401
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2efc

Способ измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях,...
Тип: Изобретение
Номер охранного документа: 0002580340
Дата охранного документа: 10.04.2016
+ добавить свой РИД