×
13.01.2017
217.015.899e

Результат интеллектуальной деятельности: СПОСОБ ВИЗУАЛИЗАЦИИ ОГРАНИЧЕННЫХ (ЗАМКНУТЫХ) НЕСТАЦИОНАРНЫХ ВИХРЕВЫХ ТЕЧЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях химических и каталитических реакций, изучении атмосферных явлений, а также ряде других областей науки и промышленных технологий, связанных с необходимостью невозмущающих измерений и контроля Способ визуализации замкнутых нестационарных вихревых течений заключается в том, что после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем. Причем используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости. При этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения. Техническим результатом является обеспечение возможности проведения исследования замкнутых нестационарных вихревых течений при Re больше 6000. 2 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях химических и каталитических реакций, изучении атмосферных явлений, а также ряде других областей науки и промышленных технологий, связанных с необходимостью невозмущающих измерений и контроля.

Экспериментальное исследование замкнутых нестационарных вихревых течений, генерируемых различными модельными устройствами, например, в цилиндрическом контейнере с вращающимися крышками, является непростой задачей в силу того, что подобные течения обычно характеризуются широкополосным набором различных компонент движения.

Для исследования динамики нестационарного вихревого течения и его кинематических характеристик наиболее перспективно использовать оптико-лазерные методы, не вносящие возмущения в исследуемый гидродинамический поток. Данные методы являются наиболее универсальными для регистрации кинематических характеристик нестационарных потоков жидкости и газа, позволяют проводить как локальные, так и панорамные (полевые) измерения в трехмерных потоках с высоким пространственным и временным разрешением, однако требуют использования мощных источников лазерного излучения и чувствительных фотоприемников. Наименее затратным и более простым методом является визуализация исследуемого течения. Визуализация выполняется с использованием различных типов оптических неоднородностей (например, вводимых в поток засеивающих частиц нейтральной плавучести) и освещением потока световым сечением. Фиксация разными способами (фото- и видеосъемкой, простым наблюдением) положения частиц в потоке в разные моменты времени позволяет получить качественную информацию о разных особенностях потока (вихрях, застойных зонах и зонах возвратного течения) и оценить пространственный размер этих областей.

Известен способ визуализации вихревого потока текучей среды в закрытом цилиндре (Sorensen J.N. Visualization of rotating fluid flow in a closed cylinder. Lyngby, Denmark: DTU, Department of Fluid Mechanics. 1992. Rep. AFM 92-06), при котором в объем с рабочей жидкостью вводят частицы, освещают поток световым сечением, фиксируют фотокамерой положение частиц в потоке в разные произвольные моменты времени. Вихревое течение в замкнутом цилиндре генерируется вращающейся с постоянной угловой скоростью верхней крышкой. В качестве светового сечения используют «лазерный нож», в качестве частиц используют Родамин-В со средним диаметром частиц 30 мкм. Для получения равномерного распределения рассеивающих частиц в потоке они заранее вводятся в контейнер, чтобы устранить возможность асимметрии. В качестве рабочей жидкости выбирается вода или водно-глицериновая смесь различной концентрации, с плотностью от 1 г/см3 - вода до 1,23 г/см3 - глицерин. Засеивающие частицы плотностью, близкой к плотности рабочей жидкости, обладают нейтральной плавучестью и равномерно распределены в потоке. Данный способ хорошо работает при стационарном режиме течения до числа Рейнольса (Re) 2500, но при увеличении числа Рейнольдса (Re) формируется нестационарное течение и движение частиц все более отклоняется от линий течения жидкости.

Недостатки способа:

1) качество картины структуры потока в различных областях светового сечения пропорционально времени записи и концентрации частиц;

2) при исследовании закрученного течения визуализация дает хорошие данные только для осесимметричного стационарного режима;

3) При Re больше 2500 наблюдается несоответствие наблюдаемых положений частиц структуре движения жидкости - область возвратного течения не визуализируется.

Известен способ (Наумов И.В., Окулов В.Л., Соренсен Ж.Н. Диагностирование пространственной структуры вихревых мультиплетов в закрученном течении // Теплофизика и аэромеханика, 2010. Т. 17, N 4. С. 585-593), при котором в объем с рабочей жидкостью вводят частицы. В качестве частиц используют воздушные пузырьки диаметром 0,2-0,3 мм. В замкнутом цилиндрическом контейнере пузырьки собираются на верхней крышке за счет растворенного в рабочей жидкости воздуха. Пузырьки образуются естественным путем при дегазации либо вводятся принудительно в рабочую жидкость (водно-глицериновую смесь). При вращении верхней крышки пузырьки двигаются от периферии вниз цилиндра и благодаря более низкому значению давления в центре вихрей пузырьки воздуха, при движении вдоль оси цилиндра вверх, собираются на их оси, образуя хорошо наблюдаемую тонкую воздушную нить.

Недостатки:

1) при Re больше 3000 и переходе к развитому нестационарному течению градиента давления становится недостаточно для движения пузырьков по вихревым осям, и структура потока не визуализируется.

Известен способ визуализации, описанный в работе Эскудье (Escudier М.Р. Observation of the flow produced in cylindrical container by rotating endwall // Experiments in Fluids, 1984. №2, p. 189-196.), при котором в объем с рабочей жидкостью вводят частицы, освещают поток световым сечением, фиксируют фотокамерой положение частиц в потоке в разные произвольные моменты времени. В качестве частиц используют флуоресцентный краситель. В качестве светового сечения используют «лазерный нож». Краситель вводят вдоль оси цилиндрического контейнера после установления необходимого для проведения исследований режима течения (через отверстие в нижней вращающейся крышке, генерирующей соосную с осью вращения крышки вихревую структуру). Краситель имеет плотность, близкую к плотности рабочей жидкости - водно-глицериновой смеси плотностью от 1 до 1,23 г/см3.

Недостатки способа:

1) подача красителя приводит к тому, что через некоторое время он заполняет весь контейнер, перемешиваясь и не позволяя визуализировать структуру потока.

2) при Re больше 3000 формируется нестационарное течение, при этом прецессирующая вихревая ось не совпадает с точкой ввода красителя и поэтому краситель движется не по вихревой оси.

Наиболее близким к заявляемому способу является способ, описанный в работе (Окулов В.Л., Меледин В.Г., Наумов И.В. Экспериментальное исследование закрученного потока в кубическом контейнере // ЖТФ. 2003. Т. 73, №10. С. 29-35), при котором в объем с рабочей жидкостью вводят частицы. Через отверстие в нижней неподвижной крышке при вращающейся верхней придонную область замкнутого контейнера заполняют красителем с плотностью, в 1,02-1,08 раза превышающую плотность рабочей жидкости. Например, рабочая жидкость водно-глицериновая смесь, а краситель - раствор концентрированного молока. Краситель вводят после установления необходимого для проведения исследований режима течения, регулируя угловую скорость вращения крышки. Краситель поднимается со дна контейнера восходящим приосевым течением, визуализируя различные структуры течения для разных значений режимных параметров. Визуализация распада вихревой структуры проводилась при Re=5000, 5500 и 6000.

Недостатки:

1) при нестационарном режиме течения при Re больше 6000 краситель перебалтывается потоком, не позволяя идентифицировать вихревую структуру.

Для больших чисел Рейнольдса возникает сложное нестационарное течение с двумя процессами колебаний: прецессии винтового вихревой структуры вокруг вертикальной оси контейнера и осцилляций рециркуляционной зоны вдоль этой оси. Краситель со дна контейнера восходящим течением поднимается по вихревой оси, визуализируя ядро прецессирующей вихревой структуры. При Re=5000 и 5500 наблюдается устойчивая картина распада вихревой структуры спирального типа. При увеличении числа Рейнольдса амплитуда этих двух колебаний в потоке увеличивается, и визуализация при числах Рейнольдса больше чем 6000 становится бесполезной, так как краситель размывается и заполняет собой весь контейнер. В случае визуализации красителем с очень близкой к рабочей жидкости плотности можно предположить, что на осях вихрей находится максимум осевой скорости течения и за счет этого частицы красителя увлекаются вдоль осей быстрее, делая видимыми как изначальный одиночный вихрь, так и многовихревую структуру после его распада.

Хотя ранее подобное расщепление ядра в закрученном потоке в трубе наблюдалось с помощью визуализации красящим веществом близкой к воде плотности (например, в Faler, J.H., Leibovich, S. An experimental map of the internal structure of a vortex breakdown // J Fluid Mech. 1978. 86(2), p. 313-335), но оно обеспечивалось непрерывной подачей краски к точке расщепления центрального вихря. В замкнутых нестационарных вихревых течениях заранее положение точки расщепления неизвестно из-за прецессии вихревого ядра, и способ предварительного хаотического засеивания трассерных частиц, а также ввод красителя по геометрической оси не мог обеспечить их непрерывную подачу к данной точке.

Задачей заявляемого изобретения является обеспечение возможности проведения исследования замкнутых нестационарных вихревых течений при Re больше 6000.

Поставленная задача решается тем, что в способе визуализации замкнутых нестационарных вихревых течений, при котором после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем, согласно изобретению используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости, при этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения.

Согласно изобретению краситель имеет переменную плотность (например, сгущенное молоко с сахаром с плотностью 1,2-1,5 г/см3). Краситель с более высокой плотностью, чем рабочая жидкость, заполняет дно замкнутого контейнера, при этом краситель не перебалтывается при нестационарных режимах течения и не меняет прозрачность среды. При уменьшении плотности красителя (растворении сахара) он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль именно вихревой оси, а не геометрического центра замкнутого контейнера и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру. При Re больше 6000, характеризующем развитый нестационарный режим, данный способ позволяет проводить визуализацию и однозначно идентифицировать вихревые структуры и их распад.

На фиг. 1 показана визуализация структуры распада вихревого ядра в закрытом контейнере квадратного сечения (ввод красителя в геометрический центр дна кюветы, краситель имеет плотность, близкую к плотности рабочей жидкости - водно-глицериновой смеси плотностью от 1 до 1,23 г/см3), где

а) визуализация структуры при Re=4207,

б) визуализация структуры при Re=4350,

в) визуализация структуры при Re=5160.

На фиг. 2 показана визуализация структуры распада вихревого ядра в закрытом контейнере квадратного сечения (заполнение придонной области рабочего объема красителем: рабочая жидкость водно-глицериновая смесь; краситель - раствор сгущенного молока с сахаром), где

а) визуализация структуры при Re=6000,

б) визуализация структуры при Re=7000,

в) визуализация структуры при Re=8000.

Способ визуализации осуществляется следующим образом.

После установления исследуемого нестационарного режима вихревого течения, определяемого угловой скоростью вращения крышки, придонную область замкнутого контейнера с рабочей жидкостью заполняют красителем, плотность которого в 1,2-1,4 раза превышает плотность рабочей жидкости. В процессе визуализации плотность красителя уменьшается и он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль вихревой оси и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру.

Пример. Рабочая жидкость - вода, краситель - сгущенное молоко с сахаром. После установления нестационарного режима через отверстие в нижней неподвижной крышке цилиндрического контейнера придонную область заполняют сгущенным молоком с сахаром. Далее сахар растворяется, тем самым изменяется плотность красителя, и он, увлекаемый нестационарным прецессирующим вихревым течением, вытягивается вдоль вихревой оси и движется со скоростью потока, позволяя однозначно идентифицировать вихревую структуру.

Способ визуализации замкнутых нестационарных вихревых течений, при котором после установления исследуемого режима течения через отверстие в нижней неподвижной крышке придонную область замкнутого объема с рабочей жидкостью заполняют красителем, отличающийся тем, что используют краситель с плотностью, в 1,2-1,4 раза превышающей плотность рабочей жидкости, при этом в процессе визуализации плотность красителя уменьшается, а время растворения красителя больше характерных времен визуализации течения.
СПОСОБ ВИЗУАЛИЗАЦИИ ОГРАНИЧЕННЫХ (ЗАМКНУТЫХ) НЕСТАЦИОНАРНЫХ ВИХРЕВЫХ ТЕЧЕНИЙ
СПОСОБ ВИЗУАЛИЗАЦИИ ОГРАНИЧЕННЫХ (ЗАМКНУТЫХ) НЕСТАЦИОНАРНЫХ ВИХРЕВЫХ ТЕЧЕНИЙ
Источник поступления информации: Роспатент

Showing 21-30 of 96 items.
20.02.2015
№216.013.2867

Способ использования и утилизации соломы злаковых культур

Изобретение относится к сельскому хозяйству. Способ включает извлечение полезного продукта, преимущественно растворимых биоусвояемых сахаров, и последующую утилизацию лигноцеллюлозных отходов. При извлечении полезного продукта солому злаковых культур подвергают глубокой переработке, а именно:...
Тип: Изобретение
Номер охранного документа: 0002541800
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
Showing 21-30 of 65 items.
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
+ добавить свой РИД