×
13.01.2017
217.015.85d2

Результат интеллектуальной деятельности: ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002603129
Дата охранного документа
20.11.2016
Аннотация: Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности. Детектор содержит секцию преобразования, включающую катод (3), для преобразования излучения (Р), падающего на секцию преобразования, в электроны (Е) с помощью фотоэлектрического эффекта. Детектор дополнительно включает газовый электронный умножитель (4) для создания электронной лавины из электронов (Е), которые создаются в секции преобразования и входят в газовый электронный умножитель (4), при этом газовый электронный умножитель (4) содержит первый электрод (5), диэлектрический слой (6) и второй электрод (7), при этом первый электрод (5) расположен на первой стороне диэлектрического слоя (6) вблизи секции преобразования, и второй электрод (7) расположен на второй стороне диэлектрического слоя (6), противоположной первой стороне. Газовый электронный умножитель (4) содержит несколько отверстий (9), заполненных газом, при этом указанные отверстия (9) проходят через первый электрод (5), диэлектрический слой (6) и второй электрод (7). Кроме того, детектор включает детекторный анод (8) вблизи второго электрода (7) для обнаружения лавины электронов. Детекторный анод (8) проходит у каждого отверстия (9) газового электронного умножителя (4) от второго электрода (7) над отверстием (9) так, что отверстие на одной стороне полностью закрыто детекторным анодом (8). Положение детекторного анода (8) смещено вниз относительно плоскости второго электрода (7), причем одно или более отверстий (9) проходят через детекторный анод (8). Технический результат - повышение точности измерения. 15 з.п. ф-лы, 5 ил.

Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности.

Для обнаружения излучения из уровня техники известно много различных типов детекторов. Для обнаружения электромагнитного излучения большой мощности широко используются сцинтилляционные детекторы, содержащие сцинтилляторный кристалл и фотоэлектронный умножитель, в различных областях техники, например в медицинском оборудовании с формированием изображения или для геофизических исследований в нефтяной и газовой промышленности. В сцинтилляционном детекторе излучение падает на сцинтилляторный кристалл, преобразующий излучение в свет, падающий на фотокатод. Фотокатод является частью фотоэлектронного умножителя, содержащего множество динодов в стеклянной оболочке. За счет фотоэлектрического эффекта свет, падающий на фотокатод, вызывает эмиссию первичных электронов внутри трубки фотоэлектронного умножителя. Электроны ускоряются в направлении динодов в трубке, что приводит к образованию каскадов вторичных электронов, которые обнаруживаются в качестве выходного сигнала. Сцинтилляционные детекторы являются относительно громоздкими за счет трубки фотоэлектронного умножителя, которая имеет длину несколько сантиметров. Кроме того, пространственное разрешение этих детекторов относительно низкое.

Другой тип детектора, известного из уровня техники, относится к так называемым газовым электронным умножителям, в которых электроны, создаваемые за счет фотоэлектрического эффекта, входят в соответствующие отверстия, заполненные газом. Внутри отверстий имеется сильное электрическое поле, ускоряющее входящие в отверстия электроны, что приводит к образованию вторичных электронов за счет соударения электронов с атомами/молекулами газа. Таким образом, создается лавина электронов.

Детектор излучения, включающий газовый электронный умножитель, раскрыт в патенте US 6011265. В этом детекторе анод детектора, расположенный на расстоянии от газового электронного умножителя, используется для обнаружения электронной лавины. Газовый электронный умножитель содержит изолирующий материал с соответствующими отверстиями в нем и два электрода, расположенных на изолирующем материале, которые создают электрическое поле внутри отверстий. Недостатком детектора является то, что не все электроны лавины электронов могут быть обнаружены с помощью анода детектора, поскольку некоторые электроны разряжаются на электроде газового электронного умножителя вблизи анода детектора.

Задачей изобретения является создание детектора излучения компактного размера, который обеспечивает возможность точного измерения.

Эта задача решена с помощью детектора согласно пункту 1 формулы изобретения. Предпочтительные варианты выполнения изобретения указаны в зависимых пунктах формулы изобретения.

Детектор согласно изобретению предназначен для обнаружения излучения и, в частности, электромагнитного излучения высокой энергии. Здесь и в последующем под электромагнитным излучением высокой энергии понимается излучение от 10 кэВ до 100 МэВ и больше, в частности к рентгеновскому излучению и гамма-излучению.

Детектор согласно изобретению содержит секцию преобразования, включающую катод. Эта секция преобразует подлежащее обнаружению излучение, падающее на секцию преобразования, в электроны с помощью фотоэлектрического эффекта. Кроме того, детектор включает газовый электронный умножитель для создания лавины электронов, которые создаются в секции преобразования и входят в газовый электронный умножитель. Газовый электронный умножитель включает первый электрод, диэлектрический слой и второй электрод. Первый электрод и второй электрод предпочтительно выполнены из меди. Кроме того, диэлектрический материал предпочтительно выполнен из каптона. Первый электрод расположен на первой стороне диэлектрического слоя вблизи секции преобразования, и второй электрод расположен на второй стороне диэлектрического слоя, которая противоположна первой стороне. Газовый электронный умножитель содержит несколько отверстий и, в частности, множество отверстий, заполненных газом (например, неоном), при этом указанные отверстия проходят через первый электрод, диэлектрический слой и второй электрод. Дополнительно к этому, детектор содержит анод детектора вблизи второго электрода для обнаружения лавины электронов.

Детектор согласно изобретению характеризуется тем, что детекторный анод проходит у каждого отверстия от второго электрода над отверстием так, что отверстие полностью закрыто на одной стороне детекторным анодом. Изобретение основывается на понимании того, что за счет закрывания отверстий газового электронного умножителя детекторным анодом не теряются электроны электронной лавины за счет разряда на втором электроде. Поэтому может быть достигнуто более точное измерение излучения с помощью детектора. Кроме того, детектор согласно изобретению имеет намного более компактный размер по сравнению со сцинтилляционными детекторами с трубками фотоэлектронного умножителя, поскольку толщина газового электронного умножителя обычно лежит в диапазоне нескольких микрон по сравнению с несколькими сантиметрами фотоэлектронного умножителя. Кроме того, пространственное разрешение газового электронного умножителя может быть значительно выше по сравнению со сцинтилляционными детекторами, включающими трубки фотоэлектронного умножителя.

В одном частном варианте выполнения детектора секция преобразования содержит фотокатод и сцинтилляционный материал, например NaI (Tl), расположенный на стороне фотокатода, обращенной к входящему в секцию преобразования излучению. Сцинтилляционный материал преобразует падающее излучение в свет. Фотоны этого света вызывают эмиссию электронов из фотокатода за счет фотоэлектрического эффекта. В результате, фотокатод может быть расположен вблизи отверстий газового электронного умножителя, что уменьшает размер детектора. Однако, в одном варианте выполнения, секция преобразования может содержать обычный катод и газовый объем, так что излучение проходит через катод и вызывает эмиссию электронов из атомов/молекул газа в газовом объеме за счет фотоэлектрического эффекта.

Фотокатод в указанном выше варианте выполнения может быть расположен, например, непосредственно на первом электроде (т.е. в контакте с ним). Однако может иметься также зазор, заполненный газом, между фотокатодом и первым электродом.

В особенно предпочтительном варианте выполнения изобретения детекторный анод и второй электрод образуют интегральный электрод, что упрощает конструкцию детектора.

В другом варианте выполнения изобретения детекторный анод проходит у одного или более отверстий и, в частности, у каждого отверстия в плоскости или параллельно плоскости второго электрода.

В другом варианте выполнения детекторный анод имеет одно или более отверстий и, в частности, у каждого отверстия имеет U-образное поперечное сечение вдоль плоскости, перпендикулярной второму электроду. Кроме того, детекторный анод может иметь одно или более отверстий и, в частности, у каждого отверстия полуэллиптическое поперечное сечение. За счет использования U-образного или полуэллиптического поперечного сечения увеличивается детекторная поверхность анода.

Отверстия в газовом электронном умножителе могут иметь различные формы. В одном варианте выполнения по меньшей мере одно отверстие и, в частности, каждое отверстие имеет цилиндрическую форму. В другом варианте выполнения по меньшей мере одно отверстие и, в частности, каждое отверстие имеет форму усеченного конуса от первого электрода в направлении второго электрода. Кроме того, по меньшей мере одно отверстие и, в частности, каждое отверстие могут иметь форму усеченного конуса от первого и второго электрода в направлении внутреннего пространства отверстия.

Для достижения высокого пространственного разрешения максимальный диаметр каждого отверстия составляет между 10 и 100 мкм, и/или расстояние между центрами соседних отверстий на виде сверху на первый электрод составляет между 10 и 100 мкм.

Детектор согласно изобретению можно использовать в различных областях техники. В одном предпочтительном варианте выполнения детектор является детектором для обнаружения излучения в медицинском устройстве, в частности в компьютерном томографе. Другими словами, изобретение относится также к компьютерному томографу, содержащему детектор согласно изобретению. Кроме того, детектор согласно изобретению можно использовать в каротажном устройстве, используемом для регистрации геологической формации, через которую проходит скважина. Поэтому изобретение относится также к каротажному устройству, включающему указанный выше детектор. Изобретение можно использовать также в других областях техники. Например, детектор согласно изобретению можно использовать в ядерной физике для изучения спектров радиоактивных нуклидов, для измерения времени существования атомных ядер, в геологии (анализ радиоактивности, поиск минералов, определение возраста породы), в биологии, дефектоскопии и т.п.

Ниже приводится описание вариантов выполнения изобретения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - разрез ячейки детектора излучения высокой энергии согласно одному варианту выполнения изобретения;

фиг. 2 - разрез по линии II-II на фиг. 1 детектора, имеющего множество ячеек, показанных на фиг. 1;

фиг. 3 - разрез части ячейки детектора согласно второму варианту выполнения изобретения;

фиг. 4 - разрез части ячейки детектора согласно третьему варианту выполнения изобретения; и

фиг. 5 - разрез части ячейки детектора согласно четвертому варианту выполнения изобретения.

Ниже приводится описание изобретения применительно к сцинтилляционному детектору, включающему множество ячеек для обнаружения электромагнитного излучения высокой энергии и, в частности, рентгеновского излучения и/или гамма-излучения.

На фиг. 1 показана в разрезе ячейка детектора согласно первому варианту выполнения изобретения. Детектор включает сцинтилляционный материал 1, который преобразует подлежащее обнаружению излучение высокой энергии (обозначено стрелкой Р1) в свет (обозначен стрелкой Р2), т.е. в электромагнитное излучение с другой длиной волны, чем падающее излучение. В зависимости от сцинтилляционного материала, свет, создаваемый в материале, может лежать внутри видимого спектра или в спектре, соседнем с видимым спектром. В предпочтительном варианте выполнения используется NaI (Tl) (иодид натрия, активированный таллием) в качестве сцинтилляционного кристалла. Оптически прозрачное окно 2 (предпочтительно выполненное из соответствующего стекла) расположено у дна этого сцинтилляционного кристалла.

Создаваемый в сцинтилляционном кристалле свет достигает через оптическое окно 2 фотокатод 3, в результате чего за счет фотоэлектрического эффекта из фотокатода эмитируются электроды Е. Верхняя часть детектора, содержащая сцинтиллятор 1, оптическое окно 2 и фотокатод 3, представляют вариант выполнения секции преобразования, определенной в пункте 1 формулы изобретения. В другом варианте выполнения эта секция преобразования может иметь другую структуру, например, иметь катод и зазор, заполненный газом, так что фотоэлектрический эффект основан на взаимодействии между излучением, проходящим через катод, и электронами газа в газовом объеме.

Под секцией преобразования на фиг. 1 расположен газовый электронный умножитель 4. Этот умножитель включает первый электрод 5 (предпочтительно выполненный из меди), диэлектрический материал 6 (предпочтительно выполненный из каптона) и второй электрод 7 (предпочтительно выполненный из меди). Цилиндрическое отверстие 9 образовано через электроды 5 и 7 и диэлектрический материал 6. Отверстие заполнено газом, например неоном. Подходящее напряжение (например, 100 В) приложено между первым и вторым электродами, так что существует зона сильного электрического поля внутри отверстия 9. Поэтому электрон Е, входящий в отверстие 9, ускоряется и соударяется с атомами/молекулами газа с образованием вторичных электронов, которые, в свою очередь, соударяются с другими атомами и т.д. В результате, создается электронная лавина. Эта лавина обнаруживается с помощью детекторного анода 8, расположенного на дне отверстия 9. Подходящий электрический потенциал имеется между этим анодом и катодом 3. В противоположность уровню техники, детекторный анод 8 не расположен на расстоянии от второго электрода 7. Вместо этого электрод 7 и детекторный анод 8 образуют интегральный электрод. Это имеет то преимущество, что все электроны лавины, генерированные в отверстии 9, обнаруживаются с помощью детекторного анода 8.

В противоположность этому, в детекторе согласно уровню техники штриховые линии L, показанные на фиг. 1, образуют нижнюю часть электрода 7, где детекторный анод 8 расположен на расстоянии от электрода 7. Вследствие этого не все лавинные электроны достигают детекторного анода 8, поскольку некоторые электроны у края отверстия могут ударяться в дно электрода 7 за счет линий электрического поля, исходящих из электрода 7. Это приводит к ошибкам измерения, поскольку не вся энергия электронной лавины улавливается анодом. Эта проблема решена с помощью показанного на фиг. 1 детектора, поскольку дно отверстия 9 закрыто, так что все электроны электронной лавины обнаруживаются анодом 8. Поэтому показанная на фиг. 1 ячейка детектора обеспечивает более точное измерение энергии и интенсивности падающего излучения.

В показанном на фиг. 1 варианте выполнения фотокатод 3 расположен непосредственно на верхнем электроде 5 (т.е. в контакте с ним). Однако может также существовать небольшой зазор между фотокатодом 3 и электродом 5, так что газ проходит в детекторе между всеми отверстиями 9 газового электронного умножителя 4.

На фиг. 2 показан разрез по линии II-II на фиг. 1 детектора, включающего множество показанных на фиг. 1 ячеек. Как показано на фиг. 2, несколько отверстий 9 выполнены через верхний электрод 5 в детекторе. Для ясности лишь некоторые из соседних отверстий обозначены позицией 9. На фиг. 2 показана лишь часть поверхности обнаружения детектора. Другими словами, детектор включает намного больше отверстий, чем показано на фиг. 2, например несколько тысяч отверстий. Размер детекторной поверхности, включающей отверстия, предпочтительно лежит в диапазоне нескольких сантиметров (например, 10 см × 10 см). Для достижения высокого пространственного разрешения расстояние D между соседними отверстиями предпочтительно лежит в диапазоне нескольких микрон, например между 10 и 100 мкм. Диаметр d отверстий предпочтительно лежит в том же диапазоне, т.е. между 10 и 100 мкм. Пространственное разрешение показанного на фиг. 2 детектора намного выше, чем пространственное разрешение, которое может быть достигнуто с помощью обычных сцинтилляционных детекторов с использованием трубок фотоэлектронного умножителя. Другим преимуществом детектора по сравнению с детекторами, включающими трубки фотоэлектронного умножителя, является то, что размер детектора намного меньше. Протяженность ячейки детектора на фиг. 1 в вертикальном направлении лежит в диапазоне нескольких микрон, в то время как трубка фотоэлектронного умножителя обычно имеет длину в несколько сантиметров.

В показанном на фиг. 1 варианте выполнения анод 8 выполнен в виде плоского электрода, параллельного второму электроду 7. Кроме того, отверстие 9 имеет цилиндрическую форму. Однако возможны различные формы детекторного анода и отверстия, как показано в вариантах выполнения на фиг. 3-5. На этих фигурах показаны поперечные сечения части ячеек детектора, образующих газовый электронный умножитель. Часть ячеек наверху этого умножителя соответствуют структуре, показанной на фиг. 1. На фиг. 3-5 компоненты, соответствующие фиг. 1, обозначены теми же позициями.

На фиг. 3 показан вариант выполнения, в котором отверстие 9 конически сужается от первого электрода 5 в направлении второго электрода 7. Кроме того, детекторный анод 8 лежит в плоскости второго электрода 7, так что с помощью анода 8 и электрода 7 образуется в целом плоский электрод. Показанный на фиг. 3 вариант выполнения имеет очень компактный размер.

На фиг. 4 показан вариант выполнения, в котором отверстие 9 газового электронного умножителя конически сужается как от верхнего электрода 5, так и от нижнего электрода 7 в направлении середины отверстия, где отверстие имеет наименьший диаметр. Кроме того, положение детекторного анода 8 смещено вниз, так что образуется U-образная форма детекторного анода. Этот вариант выполнения увеличивает поверхность обнаружения анода 8, что приводит к улучшенной способности обнаружения. Кроме того, форма отверстия с поверхностями в виде усеченного конуса увеличивает электрическое поле внутри отверстия.

На фиг. 5 показан другой вариант выполнения ячейки детектора. Как и на фиг. 4, отверстие 9 имеет поверхности в виде усеченного конуса. В противоположность фиг. 4, анод 8 имеет полуэллиптическое поперечное сечение, что также приводит к большей площади детекторного анода.

Указанные выше варианты выполнения имеют многие преимущества. В частности, измерения детектора более точные, поскольку не происходит потеря электронов в электронной лавине, создаваемой с помощью газового электронного умножителя. Кроме того, размер детектора намного меньше, а пространственное разрешение намного больше по сравнению со сцинтилляционными детекторами с использованием фотоэлектронного умножителя.


ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Showing 591-600 of 1,429 items.
27.08.2016
№216.015.4dfd

Устройство сгорания с импульсным разделением топлива

Дано описание управляющего блока устройства сгорания и устройства сгорания, например, газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал,...
Тип: Изобретение
Номер охранного документа: 0002595292
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ae

Способ и устройство для сжатия данных, представляющих зависящий от времени сигнал

Группа изобретений относится к области обработки сигналов и может быть использована для сжатия данных D(nT), представляющих зависящий от времени сигнал A(t), содержащий зависящие от времени частичные сигналы Aj(t). Техническим результатом является уменьшение объема памяти для хранения...
Тип: Изобретение
Номер охранного документа: 0002595929
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5134

Способ контроля контакта рельса с колесом

Изобретение относится к способу контроля контакта между колесом и рельсом железнодорожного транспортного средства. Способ контроля контакта между колесом и рельсом железнодорожного транспортного средства содержит этапы: записи вертикального и/или бокового ускорения по меньшей мере одного колеса...
Тип: Изобретение
Номер охранного документа: 0002596048
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.52e6

Рельсовое транспортное средство, снабженное перегородкой

Изобретение относится к рельсовым транспортным средствам. Рельсовое транспортное средство снабжено перегородкой (1), проходящей в поперечном направлении рельсового транспортного средства, соединенной по меньшей мере с одной боковой стенкой (2) рельсового транспортного средства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002594045
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5361

Способ регулирования расхода охлаждающего средства внутри активно охлаждаемых конструктивных элементов и конструктивный элемент

Изобретение относится к способу алитирования внутренней поверхности канала (10) полого конструктивного элемента (1, 120, 130) гидравлической машины и к полому конструктивному элементу (1, 120, 130) гидравлической машины. Осуществляют нанесение покрытия диффузионным алитированием по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002593798
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5373

Противопожарное устройство

Изобретение относится к противопожарному устройству для кабельного ввода (22), через который проходит кабельный блок (16) из пожароопасного пространства (12) в подлежащее защите от пожара пространство (14), содержащему противопожарное средство (32), которое предусмотрено для защиты от...
Тип: Изобретение
Номер охранного документа: 0002593828
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53e7

Снижение электрического сопротивления у электрической машины, имеющей обмотки, расположенные в пазах

Изобретение касается электрической машины. Обмотки машины разделены на ветви, и по меньшей мере одна ветвь имеет некоторое количество s последовательно включенных катушек. Катушки включают в себя каждая параллельно включенные отдельные провода, расположенные несколькими жгутами. Жгут одной...
Тип: Изобретение
Номер охранного документа: 0002593765
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5417

Многополюсная газоизолированная секция сборной шины

Многополюсная газоизолированная секция сборной шины имеет несколько расположенных вдоль главной оси (2) секций (5а, 5b, 5с) проводников. Секции (5а, 5b, 5с) проводников установлены по периферии изолирующего тела (6a, 6b, 6c, 10, 14). Изолирующее тело (6a, 6b, 6c, 10, 14) имеет кольцевой контур....
Тип: Изобретение
Номер охранного документа: 0002593762
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.559b

Устройство исполнительного элемента и способ установки положения линейно подвижного элемента

Изобретение относится к устройству (10) исполнительного элемента для формирования линейного перемещения, содержащему гидравлический исполнительный элемент (12), который содержит первый поршневой элемент (14) для приведения в действие исполнительного элемента и второй поршневой элемент (18) для...
Тип: Изобретение
Номер охранного документа: 0002593323
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.58ab

Электрическая машина

Изобретение относится к электротехнике, а именно к устройствам охлаждения электрических машин со съемным охладителем. На верхней стороне корпуса (1) электрической машины вблизи переднего/заднего концов (5,6) имеются отверстия (7,8) впуска воздуха, а между ними - отверстие (9) выпуска воздуха;...
Тип: Изобретение
Номер охранного документа: 0002588034
Дата охранного документа: 27.06.2016
Showing 591-600 of 948 items.
10.05.2016
№216.015.3c61

Корпус камеры сгорания

Изобретение относится к энергетике. Корпус камеры сгорания, образованный внешним кожухом камеры сгорания с внутренней полостью и внутренним кожухом камеры сгорания с внутренней полостью, причем внешний кожух камеры сгорания и внутренний кожух камеры сгорания содержат каждый по одному открытому...
Тип: Изобретение
Номер охранного документа: 0002583327
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.4009

Силовой переключатель постоянного напряжения

Изобретение относится к области электротехники и может быть использовано в устройствах переключения силовых линий постоянного напряжения. Переключатель 100 постоянного напряжения содержит по меньшей мере один прерыватель 120 и коммутаторное устройство, подключенное параллельно прерывателю, при...
Тип: Изобретение
Номер охранного документа: 0002584096
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.413a

Система etcs l2 - european train control system level 2 - автоматическая локомотивная сигнализация с автостопом

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте. Система содержит управляемый постами централизации блокировочный радиоцентр RBC на основе системы самоблокировки с расположенными между постами централизации, управляемыми с помощью устройств контроля...
Тип: Изобретение
Номер охранного документа: 0002584040
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41b7

Впрыскивание топлива под наклоном в щелевое отверстие завихрителя

Изобретение относится к энергетике. Камера сгорания для газовой турбины, содержащая предкамеру, имеющую центральную ось, и завихритель, который установлен на предкамере. Завихритель охватывает предкамеру в окружном направлении относительно центральной оси. Завихритель содержит поверхность...
Тип: Изобретение
Номер охранного документа: 0002584385
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.4792

Перо лопатки турбины и способ нанесения теплозащитного покрытия

Перо лопатки турбины содержит входную кромку, выходную кромку, наружную поверхность, включающую в себя сторону спинки пера, простирающуюся от входной кромки до выходной кромки, и сторону корыта пера, простирающуюся от входной кромки до заднего конца. Сторона корыта пера расположена напротив...
Тип: Изобретение
Номер охранного документа: 0002585668
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4888

Способ оптимизированного функционирования рельсового транспортного средства с электрическим приводом на заданном участке пути

Изобретение относится к системам управления движением поездов. Способ заключается в том, что определяют затраты на вводимую на участке пути электрическую энергию и/или нагрузку на окружающую среду при производстве вводимой на участке пути электрической энергии. При этом путь рельсовой сети...
Тип: Изобретение
Номер охранного документа: 0002587126
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48d6

Способ и устройство для контроля тормозной системы тормозного оборудования рельсового транспортного средства

Группа изобретений относится к контролю тормозной системы тормозного оборудования с несколькими тормозными системами рельсового транспортного средства. Устройство для контроля тормозной системы тормозного оборудования включает измерительные устройства (1) для измерения замедления рельсового...
Тип: Изобретение
Номер охранного документа: 0002586911
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48f4

Коммутационное устройство для транспортного средства с электрическим приводом и электрическое транспортное средство

Группа изобретений относится к электрическим тяговым системам транспортных средств. Коммутационное устройство содержит переключательный блок (28), который выполнен с возможностью соединения или разъединения приводного блока (14) транспортного средства с находящейся под высоким напряжением линии...
Тип: Изобретение
Номер охранного документа: 0002586810
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4923

Кабина машиниста локомотива

Изобретение относится к области автоматики на железнодорожном транспорте. Кабина машиниста локомотива включает дисплей на лобовом стекле с индикацией информации, релевантной для рельсового транспортного средства, в поле зрения машиниста локомотива, блок формирования изображения дисплея на...
Тип: Изобретение
Номер охранного документа: 0002586815
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.492c

Резонаторное устройство и способ для возбуждения резонатора

В способе возбуждения резонатора, который имеет резонансную частоту, резонатор в течение первого временного интервала возбуждается с первой частотой, которая отличается от резонансной частоты на первую разность частот. В течение второго временного интервала резонатор возбуждается с второй...
Тип: Изобретение
Номер охранного документа: 0002586410
Дата охранного документа: 10.06.2016
+ добавить свой РИД