×
13.01.2017
217.015.85cb

СПОСОБ ОЧИСТКИ ВОДЫ ОТ ЩАВЕЛЕВОЙ КИСЛОТЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам очистки воды от щавелевой кислоты посредством ее полного окисления с образованием углекислого газа и воды (минерализации), может применяться для водоподготовки и/или очистки стоков различных производств и направлено на защиту окружающей среды и здоровья человека. При осуществлении способа очистки воды от щавелевой кислоты в присутствии катализатора, содержащего активированный уголь, включающего подачу озонокислородной смеси в суспензию и извлечение отработанного катализатора, в качестве катализатора используют активированный уголь с размером гранул 40-100 мкм с включенным в поры магнетитом FeO в количестве 20-30% мас., при этом подачу озонокислородной смеси с концентрацией озона 9-11 мг/л при концентрации указанного катализатора 0,6-1,2 г/л осуществляют в режиме барботажа, а извлечение отработанного катализатора проводят путем магнитной сепарации. Катализатор получают путем суспензирования активированного угля в присутствии гидроксидов железа (II, III) при нагреве, создания щелочной среды и отделения твердой фазы, Технический результат заключается в ускорении и удешевлении процесса очистки воды от щавелевой кислоты за счет повышения весовой активности катализатора, снижения удельного расхода озона и исключения механического перемешивания суспензии. 1 з.п. ф-лы, 3 табл., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам очистки воды от щавелевой кислоты посредством ее полного окисления с образованием углекислого газа и воды (минерализации), может применяться для водоподготовки и/или очистки стоков различных производств и направлено на защиту окружающей среды и здоровья человека.

Щавелевая кислота относится к III классу опасности (ПДК 0,5 мг/л), в связи с чем ее присутствие в питьевой воде и попадание в окружающую среду со сточными водами недопустимо. Щавелевая кислота широко применяется в промышленности, а также является конечным продуктом, образующимся в результате некаталитического озонирования наиболее опасного класса загрязнителей - фенолов и их производных. Щавелевая кислота является веществом, трудно разлагаемым при озонировании.

Очистка воды подразумевает полную минерализацию щавелевой кислоты, т.е. ее полное окисление с образованием углекислого газа и воды.

Известен способ очистки воды от щавелевой кислоты (Beltran F.J., Rivas F.J., Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water // Water Research. 2005, 39, 3553-3564) посредством озонирования в присутствии катализатора - оксида алюминия с нанесенным на его поверхность оксидом железа (III) (Fe2O3/Al2O3).

Гранулы катализатора размером 1,6-2,0 мм в количестве 1,25-3,75 г/л помещают в обрабатываемую воду объемом 800 мл, содержащую 8 ммоль/л щавелевой кислоты, и в режиме барботажа с механическим перемешиванием (200 мин-1) подают озонокислородную смесь с концентрацией озона 15-45 мг/л. В ходе процесса поддерживают температуру 10-40°C. Использование катализатора позволяет повысить скорость минерализации щавелевой кислоты, содержащейся в воде.

Данный способ имеет следующие недостатки:

- необходимость механического перемешивания озонируемой суспензии со скоростью 200 мин-1;

- необходимость поддержания повышенной температуры 40°C;

- необходимость использования дополнительного оборудования (фильтр, центрифуга и т.п.) для извлечения гранул катализатора из очищенной воды.

В качестве прототипа выбран способ очистки воды от щавелевой кислоты (Beltran F.J., Rivas F.J., Fernandez L.A., Alvarez P.M., Montero-de-Espinosa R. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon // Ind. Eng. Chem. Res. 2002, 41, 6510-6517) посредством озонирования в присутствии катализатора - активированного угля. Гранулы катализатора размером 1000-1600 мкм в количестве 0,625-2,500 г/л помещают в обрабатываемую воду объемом 400 мл, содержащую 4-8 ммоль/л щавелевой кислоты, и при скорости перемешивания жидкости 100-300 мин-1 подают озонокислородную смесь с содержанием озона 15-52 мг/л и расходом 7-25 л/ч.

Массовый расход озона на единицу объема озонируемой воды составляет 263-3250 мг O3/(ч·л воды). В ходе процесса поддерживали температуру 10-30°C.

Средняя скорость минерализации щавелевой кислоты (ЩК) по известному способу составляет 0,67-2,16 ммоль/(л·ч) при удельном расходе озона 11,9-54,3 моль O3/моль ЩК. Весовая активность катализатора составляет 0,54-1,73 ммоль/(ч·г).

Данный способ имеет следующие недостатки:

- невысокая весовая активность катализатора;

- необходимость механического перемешивания озонируемой суспензии;

- необходимость использования озонокислородной смеси с высокой концентрацией озона;

- отсутствие возможности осуществлять процесс извлечения гранул катализатора из очищенной воды непосредственно в емкости для озонирования после завершения очистки, что вызывает необходимость использования дополнительного оборудования и трудозатрат для извлечения отработанных гранул катализатора из очищенной воды.

Технический результат заключается в ускорении и удешевлении процесса очистки воды от ЩК за счет повышения весовой активности катализатора, снижения удельного расхода озона и исключения механического перемешивания суспензии.

Сущность изобретения заключается в том, что при осуществлении способа очистки воды от ЩК в присутствии катализатора, содержащего активированный уголь, включающего подачу озонокислородной смеси в суспензию и извлечение отработанного катализатора, согласно п. 1 формулы, в качестве катализатора используют активированный уголь с размером гранул 40-100 мкм с включенным в поры магнетитом Fe3O4 в количестве 20-30% масс., при этом подачу озонокислородной смеси с концентрацией озона 9-11 мг/л при концентрации указанного катализатора 0,6-1,2 г/л осуществляют в режиме барботажа, а извлечение отработанного катализатора проводят путем магнитной сепарации.

Согласно п. 2 формулы изобретения катализатор получают путем суспензирования активированного угля в присутствии гидроксидов железа (II, III) при нагреве, создания щелочной среды и отделения твердой фазы.

Очистка воды подразумевает полную минерализацию ЩК, т.е. ее полное окисление с образованием углекислого газа и воды.

В Таблице 1 показано влияние размера гранул катализатора на его весовую каталитическую активность, среднюю скорость минерализации ЩК и удельный расход озона на ее окисление. Содержание озона в газовой смеси составляет 10 мг/л, содержание катализатора - 1,2 г/л.

Экспериментально доказано (таблица 1), что размер гранул катализатора в интервале 40-100 мкм позволяет существенно повышать его весовую каталитическую активность и делает возможным при использовании озонокислородной смеси с более низким, чем в прототипе, содержанием озона получать более высокую, чем в прототипе, скорость минерализации ЩК и более низкий, чем в прототипе, удельный расход озона на окисление ЩК.

Экспериментально установлено, что применение катализатора более мелкой фракции (менее 40 мкм) является нецелесообразным, поскольку приводит к существенному увеличению времени его магнитной сепарации. Так, катализатор с размером гранул 40-100 мкм полностью осаждается в постоянном магнитном поле непосредственно в контактной емкости для озонирования за 4 минуты, в то время как катализатор с размером гранул <40 мкм за 4 минуты осаждается лишь на 30% и при дальнейшей его магнитной сепарации полного осаждения не происходит.

В Таблице 2 показано влияние концентрации катализатора на среднюю скорость минерализации ЩК. Содержание озона в газовой смеси составляет 10 мг/л, катализатор фракции 40-100 мкм.

Экспериментально доказано (таблица 2), что концентрация катализатора в диапазоне 0,6-1,2 г/л является оптимальной, поскольку при более низком содержании катализатора (<0,6 г/л) наблюдается существенное снижение средней скорости минерализации щавелевой кислоты, в то время как повышение концентрации катализатора (>1,2 г/л) приводит лишь к незначительному ее увеличению.

Для обеспечения возможности проведения процесса извлечения гранул катализатора из очищенной воды непосредственно в емкости для озонирования в поры катализатора предварительно вводят частицы магнетита Fe3O4.

Количество активированного угля и солей железа (II, III) для приготовления катализатора необходимо подбирать таким образом, чтобы в конечном продукте содержание магнетита Fe3O4 находилось в диапазоне 20-30% масс. При таком содержании магнетита Fe3O4 с одной стороны катализатор будет обладать способностью быстро осаждаться в постоянном магнитном поле, а с другой - характеризоваться высокой каталитической активностью.

В таблице 3 проиллюстрировано влияние содержания магнетита Fe3O4 в катализаторе на его весовую каталитическую активность и способность к магнитной сепарации. Содержание озона в газовой смеси составляет 10 мг/л, концентрация катализатора - 1,2 г/л, катализатор фракции 40-100 мкм.

Экспериментально установлено (таблица 3), что при содержании магнетита Fe3O4 в катализаторе менее 20% масс. последний практически полностью теряет способность к магнитной сепарации, а повышение содержания магнетита в катализаторе более 30% масс. приводит к существенному снижению его весовой каталитической активности.

Экспериментально доказана возможность многократного применения указанного катализатора. При этом потеря активности за цикл составляет не более 10%.

Возможность исключения механического перемешивания озонируемой суспензии в емкости для озонирования также обусловлена более высокой, чем в прототипе, дисперсностью катализатора. Исследования показали, что мелкодисперсные гранулы катализатора размером 40-100 мкм в отличие от гранул размером более 250 мкм, способны равномерно распределяться по объему емкости только за счет осуществления барботажа озонокислородной смеси, т.е. без дополнительного механического перемешивания.

Осуществление заявляемого способа показано на примерах.

Пример 1

Предварительно катализатор готовили следующим образом: 50 г активированного угля измельчали и отбирали фракцию размером 40-100 мкм. Затем активированный уголь суспензировали в 500 мл дистиллированной воды. Отдельно готовили раствор FeCl3, растворяя 12 г соли FeCl3 в 1300 мл дистиллированной воды.

Отдельно готовили раствор FeSO4, содержащий 13 г соли FeSO4 в 150 мл дистиллированной воды. Растворы солей FeCl3 и FeSO4 нагревали до 60°C и интенсивно перемешивали. Образовавшуюся суспензию гидроксидов железа (II, III) смешивали с ранее приготовленной суспензией активированного угля.

Полученную смесь выдерживали 30 мин при комнатной температуре при перемешивании, после чего в нее медленно добавляли концентрированный водный раствор аммиака до получения pH 11. Полученную суспензию выдерживали при перемешивании и температуре 70°C в течение 60 мин и оставляли на 24 часа при комнатной температуре. Затем фильтрованием отделяли твердую фазу от маточного раствора и промывали дистиллированной водой.

Высушивали полученный катализатор на воздухе при 50°C. Содержание включенного в поры активированного угля магнетита Fe3O4 составило 20% масс.

В емкость для озонирования помещали раствор ЩК объемом 500 мл с концентрацией 10 ммоль/л. В раствор загружали высушенный катализатор в количестве 1,2 г/л. После чего осуществляли подачу озонокислородной смеси с расходом 48 л/час и с концентрацией озона 10 мг/л. Процесс проводился в режиме барботажа без механического перемешивания при температуре 30°C.

Концентрацию ЩК в ходе озонирования определяли с помощью анализатора общего углерода TOC-L фирмы Shimadzu (Япония).

В ходе процесса озонирования происходила полная минерализация ЩК (0% общего углерода), средняя скорость минерализации составила 2,50 ммоль/(л·ч) при удельном расходе озона 8,0 моль O3/моль ЩК. Весовая активность катализатора - 2,10 ммоль/(ч·г). После завершения очистки катализатор в течение 4 минут извлекали из обработанной воды методом магнитной сепарации непосредственно в емкости для озонирования путем осаждения под действием постоянного магнитного поля.

Пример 2

Подготовку катализатора осуществляли аналогично Примеру 1.

При приготовлении катализатора брали навеску FeCl3 равную 18 г, и навеску FeSO4 равную 20 г. При этом содержание магнетита Fe3O4 в катализаторе составило 30% масс.

Озонирование осуществляли при концентрации катализатора 0,6 г/л. В ходе озонирования происходила полная минерализация щавелевой кислоты (0% общего углерода), средняя скорость которой составила 2,20 ммоль/(л·ч) при удельном расходе озона 9,1 моль O3/моль ЩК.

Весовая активность катализатора составила 3,67 ммоль/(ч·г). После завершения очистки катализатор в течение 4 мин извлекали из обработанной воды методом магнитной сепарации непосредственно в емкости для озонирования.

Таким образом, заявленный способ позволяет достичь полной очистки воды от щавелевой кислоты при существенном ускорении и удешевлении процесса.

Источник поступления информации: Роспатент

Showing 1-10 of 125 items.
27.03.2013
№216.012.314c

Комбинированная пневматическая опалубка для возведения монолитных пролетных конструкций

Изобретение относится к строительству и может быть использовано для возведения монолитных пролетных конструкций зданий и сооружений. Комбинированная пневматическая опалубка для возведения монолитных пролетных конструкций содержит щит опалубки, выполненный из герметично соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002478158
Дата охранного документа: 27.03.2013
10.10.2015
№216.013.81ff

Способ испытания соединений импрегнированной ткани и образец для его осуществления

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом. Образец для испытания соединений...
Тип: Изобретение
Номер охранного документа: 0002564876
Дата охранного документа: 10.10.2015
27.08.2016
№216.015.4d2f

Устройство для экструдирования композиции из полимера и графита

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Устройство для экструдирования композиции из полимера и графита содержит полую обойму цилиндрической формы, в которую вставлена цилиндрической формы полая матрица с пуансоном цилиндрической формы в ней. Обойма...
Тип: Изобретение
Номер охранного документа: 0002595679
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4d64

Технологическая жидкость для глушения скважин на основе спиртов

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при глушении нефтедобывающих скважин перед проведением капитального ремонта, освоением, перфорацией. Технологическая жидкость для глушения скважин на основе спиртов, содержащая флотореагент оксаль Т-92,...
Тип: Изобретение
Номер охранного документа: 0002595019
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f31

Способ плазменной обработки металлов

Изобретение относится к способу плазменной обработки металлов, такой как сварка, резка и наплавка. Для питания рабочей сжатой дуги на плазмообразующее сопло-анод подают положительный потенциал относительно обрабатываемого материала. Для питания второй рабочей сжатой дуги на электрод-анод...
Тип: Изобретение
Номер охранного документа: 0002595185
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.55b8

Способ изготовления тонкостенных изделий из композиционного материала на основе углерод-керамической матрицы с градиентными по толщине свойствами

Изобретение предназначено для использования при изготовлении изделий, работающих в окислительных газовых потоках, в абразивосодержащих газовых и жидкостных потоках, а также в качестве пар трения. Способ изготовления тонкостенных изделий из композиционного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002593508
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.595f

Способ подготовки бумажной массы для производства картона

Изобретение относится к производству картона из макулатуры и может быть использовано в картонно-бумажной промышленности. Способ подготовки бумажной массы для производства картона включает обработку исходного сырья с получением бумажной массы заданной концентрации и введение в нее наполнителей в...
Тип: Изобретение
Номер охранного документа: 0002588206
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59d9

Ультравысокотемпературный керамический материал и способ его получения

Изобретение относится к области производства керамических материалов, в частности к технологии получения композиционных материалов на основе тугоплавких соединений для высокотемпературного применения в аэрокосмической технике. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002588079
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5e46

Резонансная ячейка для гашения акустических волн

Изобретение относится к области шумоподавления, а именно к ячейкам звукопоглощающей конструкции резонансного типа. Устройство содержит резонансную ячейку для гашения акустических волн, состоящую из камеры и входа, выполненных в форме усеченных круговых конусов. Меньшие основания камеры и входа...
Тип: Изобретение
Номер охранного документа: 0002590216
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e8f

Система управления шахтной энергетической установкой

Изобретение относится к горной промышленности и может быть использовано для управления режимом работы шахтной главной вентиляторной установки (ГВУ) подземного горнодобывающего предприятия с одновременной выработкой электроэнергии. Технический результат заключается в повышении производительности...
Тип: Изобретение
Номер охранного документа: 0002590920
Дата охранного документа: 10.07.2016
Showing 1-10 of 96 items.
27.03.2013
№216.012.314c

Комбинированная пневматическая опалубка для возведения монолитных пролетных конструкций

Изобретение относится к строительству и может быть использовано для возведения монолитных пролетных конструкций зданий и сооружений. Комбинированная пневматическая опалубка для возведения монолитных пролетных конструкций содержит щит опалубки, выполненный из герметично соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002478158
Дата охранного документа: 27.03.2013
10.10.2015
№216.013.81ff

Способ испытания соединений импрегнированной ткани и образец для его осуществления

Изобретение предназначено для оценки деформативности соединений в изделиях из импрегнированной ткани, подвергаемых двухосному напряжению неразрушающими нагрузками с целью определения деформативных характеристик пневматической конструкции в целом. Образец для испытания соединений...
Тип: Изобретение
Номер охранного документа: 0002564876
Дата охранного документа: 10.10.2015
27.08.2016
№216.015.4d2f

Устройство для экструдирования композиции из полимера и графита

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Устройство для экструдирования композиции из полимера и графита содержит полую обойму цилиндрической формы, в которую вставлена цилиндрической формы полая матрица с пуансоном цилиндрической формы в ней. Обойма...
Тип: Изобретение
Номер охранного документа: 0002595679
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4d64

Технологическая жидкость для глушения скважин на основе спиртов

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при глушении нефтедобывающих скважин перед проведением капитального ремонта, освоением, перфорацией. Технологическая жидкость для глушения скважин на основе спиртов, содержащая флотореагент оксаль Т-92,...
Тип: Изобретение
Номер охранного документа: 0002595019
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f31

Способ плазменной обработки металлов

Изобретение относится к способу плазменной обработки металлов, такой как сварка, резка и наплавка. Для питания рабочей сжатой дуги на плазмообразующее сопло-анод подают положительный потенциал относительно обрабатываемого материала. Для питания второй рабочей сжатой дуги на электрод-анод...
Тип: Изобретение
Номер охранного документа: 0002595185
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.55b8

Способ изготовления тонкостенных изделий из композиционного материала на основе углерод-керамической матрицы с градиентными по толщине свойствами

Изобретение предназначено для использования при изготовлении изделий, работающих в окислительных газовых потоках, в абразивосодержащих газовых и жидкостных потоках, а также в качестве пар трения. Способ изготовления тонкостенных изделий из композиционного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002593508
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.595f

Способ подготовки бумажной массы для производства картона

Изобретение относится к производству картона из макулатуры и может быть использовано в картонно-бумажной промышленности. Способ подготовки бумажной массы для производства картона включает обработку исходного сырья с получением бумажной массы заданной концентрации и введение в нее наполнителей в...
Тип: Изобретение
Номер охранного документа: 0002588206
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59d9

Ультравысокотемпературный керамический материал и способ его получения

Изобретение относится к области производства керамических материалов, в частности к технологии получения композиционных материалов на основе тугоплавких соединений для высокотемпературного применения в аэрокосмической технике. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002588079
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5e46

Резонансная ячейка для гашения акустических волн

Изобретение относится к области шумоподавления, а именно к ячейкам звукопоглощающей конструкции резонансного типа. Устройство содержит резонансную ячейку для гашения акустических волн, состоящую из камеры и входа, выполненных в форме усеченных круговых конусов. Меньшие основания камеры и входа...
Тип: Изобретение
Номер охранного документа: 0002590216
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e8f

Система управления шахтной энергетической установкой

Изобретение относится к горной промышленности и может быть использовано для управления режимом работы шахтной главной вентиляторной установки (ГВУ) подземного горнодобывающего предприятия с одновременной выработкой электроэнергии. Технический результат заключается в повышении производительности...
Тип: Изобретение
Номер охранного документа: 0002590920
Дата охранного документа: 10.07.2016
+ добавить свой РИД