×
13.01.2017
217.015.8507

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину температуры эксплуатации. Подготовленные образцы подвергают двум процедурам термоциклирования, на основе которых вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования. Такой способ позволит сократить время определения оптимальной температуры эксплуатации котельного оборудования. 4 ил.

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при разработке энергетического оборудования и исследовании новых марок сталей.

В настоящее время выбор температуры эксплуатации элементов котельного оборудования, изготовленного из известных и наиболее часто используемых видов сталей, осуществляется согласно рекомендациям РД 10-249-98 «Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды» (таблица 1.3 «Допустимая температура наружной поверхности с учетом продуктов сгорания») из условия жаростойкости сталей как главной характеристики, определяющей ее работоспособность.

Под температурой эксплуатации элемента котельного оборудования понимают среднюю температуру стенки материала, из которого он изготовлен.

Известен способ определения температуры эксплуатации сталей на основе их жаростойкости (ГОСТ 6130-71 «Металлы. Методы определения жаростойкости»), выбранный в качестве прототипа, в котором подготавливают не менее трех образцов элемента котельного оборудования, измеряют их толщину и массу. Образцы загружают в печь с заданной температурой, нагревают и выдерживают их не менее 5000 часов (для срока службы стали 100000 часов), периодически извлекая для измерений толщины и массы. Глубину проникновения коррозии (hгл или ) определяют по формулам:

где S0 - толщина образца до испытания, мм;

S1 - толщина образца после испытания, мм;

hол, - максимальные толщины подокисного слоя, обедненного легирующими элементами, мм;

hл, - максимальные глубины локальной коррозии, мм;

h′ - глубина равномерной коррозии, мм.

Результаты измерений при различных температурах испытаний графически обрабатывают в логарифмических координатах: время - глубина проникновения коррозии. На основе полученных зависимостей определяют оптимальную рабочую температуру эксплуатации.

Недостатком метода является длительное время проведения единичного испытания.

Задача - сокращение времени на определение оптимальной температуры эксплуатации котельного оборудования.

Поставленная задача достигается тем, что в способе подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину температуры эксплуатации. Подготовленные образцы подвергают первому термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». Затем для ускоренного старения эти же образцы подвергают второму термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования.

За безопасные диапазоны температур приняты интервалы зависимости «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», в пределах которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры.

Диапазон температур, в котором коэффициент линейных термических расширений элементарной кристаллической решетки уменьшается с ростом температуры, сопровождается отрицательной ползучестью, приводящей к процессу термоусталостного разрушения и исчерпанию несущей способности элемента котельного оборудования. Соответственно эксплуатация в этом диапазоне температур не может считаться безопасной.

Особенностью работы элементов котельного оборудования является нестационарность теплового режима, что приводит к возникновению значительных градиентов температур (±50°C) во время эксплуатации [Вайнман А.Б., Школьникова Б.Э., Смиян О.Д., Жабров А.В. Механизмы и причины «нетрадиционных» повреждений труб пароперегревателей котлов энергоблоков сверхкритического давления // Электрические станции. - 2010. - №7. - Стр. 21, 4-й абзац]. Наличие диапазона температур, в котором коэффициент линейных термических расширений элементарной кристаллической решетки резко увеличивается с ростом температуры, приведет к возникновению циклических экстремальных напряжений знакопеременного характера и последующему разрушению. Соответственно эксплуатация элемента котельного оборудования в этом диапазоне температур не может считаться безопасной.

Величину температуры эксплуатации элемента котельного оборудования выбирают на основе определения общего безопасного диапазона температур по результатам первого и второго термоциклов и с учетом существующих в реальных условиях эксплуатации градиентов - ±50°C.

Под термоциклированием подразумевают нагрев до определенной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в нагретом состоянии агор, охлаждение до комнатной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в охлажденном состоянии ахол, а затем повторение этой последовательности действий с повышением температуры в каждом цикле нагрева.

Коэффициент линейных термических расширений элементарной кристаллической решетки определяют по формуле:

где - параметр элементарной кристаллической решетки образца при температуре ti;

- параметр элементарной кристаллической решетки для холодного состояния образца предыдущего термоцикла;

ti - температура термоциклирования;

ti-1 - температура предыдущего термоцикла;

- среднее значение параметров элементарной кристаллической решетки образца.

В таблице 1 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 во время первого термоциклирования.

В таблице 2 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 во время второго термоциклирования.

В таблице 3 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 во время первого термоциклирования.

В таблице 4 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 во время второго термоциклирования.

На фиг. 1 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 от температуры при первом термоциклировании.

На фиг. 2 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 от температуры при втором термоциклировании.

На фиг. 3 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 от температуры при первом термоциклировании.

На фиг. 4 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 от температуры при втором термоциклировании.

Описание поясняется следующими примерами.

Пример 1. Подготавливают образец экранной трубы (32×5 мм) из стали Ст 10 в виде шлифа размером 15×30×5 мм, подвергают его первому термоциклированию (последовательно нагревают до 100, 215, 300, 400, 500, 550, 600, 650, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 12°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 1). Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки -температура» (фиг. 1).

Затем для ускоренного старения этот же образец подвергают второму термоциклированию (последовательно нагревают до 100, 200, 300, 400, 500, 640, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 12°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 2). Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 2).

По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования следующим образом.

На основе результатов первого термоциклирования (фиг. 1) выделяют 5 диапазонов температур: 100-300°C (T1-1-T1-3), 300-400°C (Т1-31-4), 400-500°C (Т1-41-5), 500-600°C (Т1-51-7) и 600-700°C (Т1-71-9).

В диапазонах температур 100-300°C (T1-1-T1-3), 400-500°C (T1-4-T1-5) и 600-700°C (Т1-71-9) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 500-600°C (T1-5-T1-7) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 11,3·10-6 до 20,6·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазон температур 300-400°C (Т1-31-4), в котором коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасный для первого термоцикла.

На основе результатов второго термоциклирования (фиг. 2) выделяют 4 диапазона температур: 100-200°C (T2-1-T2-2), 200-400°C (Т2-22-4), 400-640°C (Т2-42-6) и 640-700°C (Т2-62-7).

В диапазонах температур 100-200°C (T2-1-T2-2) и 640-700°C (Т2-62-7) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 400-640°C (Т2-42-6) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 15,9·10-6 до 23,1·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазон температур 200-400°C (Т2-22-4) принимают за безопасный для второго термоцикла, так как изменение коэффициента линейных термических расширений элементарной кристаллической решетки образцов в этом диапазоне укладывается в погрешность измерений.

Общим безопасным диапазоном температур для двух термоциклов является 300-400°C.

При этом величина температуры эксплуатации экранной трубы из стали Ст 10 с учетом существующих в реальных условиях эксплуатации градиентов котельного оборудования (±50°C) составляет 350°C.

Полученное значение температуры подтверждается опытом эксплуатации элементов котельного оборудования из стали Ст 10, согласно которому данная сталь используется в котлостроении для изготовления экранов в топочной камере котлоагрегата, штамповок, поковок, трубопроводов котлов высокого давления для длительной работы при температурах, не превышающих 350°C [Стали и сплавы для высоких температур: Справ, изд. В 2-х кн. Кн. 1. / С.Б. Масленков, Е. А. Масленкова. - М.: Металлургия, 1991. - С. 50].

Пример 2. Подготавливают образец трубы экономайзера (32×5 мм) из стали Ст 20 в виде шлифа размером 15×30×5 мм, подвергают его первому термоциклированию (последовательно нагревают до температуры 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 637, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 10°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 3). Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 3).

Затем для ускоренного старения этот же образец подвергают второму термоциклированию (последовательно нагревают до температуры 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 650, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 10°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 4). Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 4).

По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования следующим образом.

На основе результатов первого термоциклирования (фиг. 3) выделяют 6 диапазонов температур: 100-200°C (T3-1-T3-3), 200-250°C (Т3-33-4), 250-350°C (Т3-43-6), 350-450°C (Т3-63-8), 450-500°C (Т3-83-9) и 500-700°C (T3-9-T3-12).

В диапазонах температур 100-200°C (Т3-13-3), 250-350°C (Т3-43-6) и 500-700°C (Т3-93-12) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести.

Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 450-500°C (Т3-83-9) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 14,6·10-6 до 20,4·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазоны температур 200-250°C (Т3-33-4) и 350-450°C (Т3-63-8), в которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасные для первого термоцикла.

На основе результатов второго термоциклирования (фиг.4) выделяют 7 диапазонов температур: 100-150°C (Т4-14-2), 150-200°C (Т4-24-3), 200-250°C (Т4-34-4), 250-300°C (Т4-44-5), 300-400°C (Т4-54-7), 400-450°C (Т4-74-8) и 450-700°C (Т4-84-10).

В диапазонах температур 100-150°C (Т4-14-2), 250-300°C (Т4-44-5) и 400-450°C (Т4-74-8) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 200-250°C (Т4-34-4) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 11,9·10-6 до 15,4·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазоны температур 150-200°C (Т4-24-3), 300-400°C (Т4-54-7) и 450-700°C (T4-8-T4-10), в которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасные для второго термоцикла.

Общим безопасным диапазоном температур для двух термоциклов является 350-400°C.

При этом величина температуры эксплуатации труб экономайзера из стали Ст 20 с учетом существующих в реальных условиях эксплуатации градиентов котельного оборудования (±50°C) составляет 375°C.

Опыт эксплуатации стали Ст 20 [Стали и сплавы для высоких температур: Справ. изд. В 2-х кн. Кн. 1. / С.Б. Масленков, Е. А. Масленкова. -М.: Металлургия, 1991. - С. 54], применяемой для изготовления труб пароперегревателей, коллекторов и трубопроводов котлов высокого давления, показывает, что для длительной службы температура ее эксплуатации не должна превышать 350°C.

Согласно [РД 10-249-98 «Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды», таблица 1.3 «Допустимая температура наружной поверхности с учетом продуктов сгорания»] температура наружной стенки элемента котельного оборудования, изготовленного из стали Ст 20, не должна превышать 450-500°C. При этом температура среды, находящейся внутри труб экономайзеров и экранных поверхностей, обычно равна температуре насыщения пара - 310-320°C. Таким образом, температура эксплуатации, равная средней температуре, составляет 380-410°C, что подтверждает полученное значение 375°C.

Способ определения температуры эксплуатации элементов котельного оборудования, в котором подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину рабочей температуры эксплуатации, отличающийся тем, что подготовленные образцы подвергают первому термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки, результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», затем для ускоренного старения эти же образцы подвергают второму термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки, результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», по двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину рабочей температуры эксплуатации элемента котельного оборудования.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 266 items.
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab4

Вакуумный выключатель тока

Изобретение относится к силовой коммутационной аппаратуре и предназначено для использования в вакуумных выключателях и контакторах постоянного и переменного тока. Вакуумный выключатель тока содержит дугогасительную камеру с аксиальными подвижным и неподвижным электродами, снабженными кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002567115
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.94b1

Способ получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах FeO@SOH, с цианатами щелочных металлов при...
Тип: Изобретение
Номер охранного документа: 0002569684
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.959c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002569920
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9734

Устройство для максимальной токовой защиты

Изобретение относится к электротехнике и может быть использовано для максимальной токовой защиты закрытых токопроводов от токов коротких замыканий. Техническим результатом является упрощение конструкции. Устройство содержит пластину, один конец которой закреплен в прорези планки, прикрепленной...
Тип: Изобретение
Номер охранного документа: 0002570328
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9740

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002570340
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002570367
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97cf

Солнечная установка

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального...
Тип: Изобретение
Номер охранного документа: 0002570483
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a351

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002573451
Дата охранного документа: 20.01.2016
Showing 11-20 of 154 items.
27.11.2015
№216.013.94b1

Способ получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах FeO@SOH, с цианатами щелочных металлов при...
Тип: Изобретение
Номер охранного документа: 0002569684
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.959c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002569920
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9734

Устройство для максимальной токовой защиты

Изобретение относится к электротехнике и может быть использовано для максимальной токовой защиты закрытых токопроводов от токов коротких замыканий. Техническим результатом является упрощение конструкции. Устройство содержит пластину, один конец которой закреплен в прорези планки, прикрепленной...
Тип: Изобретение
Номер охранного документа: 0002570328
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9740

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002570340
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002570367
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97cf

Солнечная установка

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального...
Тип: Изобретение
Номер охранного документа: 0002570483
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a351

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002573451
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c543

Фильтрующий материал для очистки питьевой воды

Изобретение относится к сорбционно-фильтрующим материалам и может быть использовано при очистке хозяйственно-питьевых и промышленных сточных вод предприятий различных отраслей промышленности. Зернистый природный материал содержит на поверхности каталитически активный слой, состоящий из смеси...
Тип: Изобретение
Номер охранного документа: 0002574754
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5aa

Способ измерения погонной емкости одножильного электрического провода

Изобретение относится к измерительной технике, в частности к измерениям погонной емкости одножильного электрического провода в процессе его производства. Способ заключается в создании гармонического электрического поля между участком поверхности изоляции провода и заземленной электропроводящей...
Тип: Изобретение
Номер охранного документа: 0002578658
Дата охранного документа: 27.03.2016
+ добавить свой РИД