×
13.01.2017
217.015.7390

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в предварительной подготовке поверхности основы имплантата, изготовленной из титана, включающей механическую обработку титановой основы (формообразование), механическую полировку, затем очистку поверхности и химическое обезжиривание, последующую обработку поверхности титановой основы пучком ионов гелия с имплантацией ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, при этом имплантацию ионов гелия проводят с энергией 100-200 кэВ и дозой 6·10-6·10 ион/см, затем сформированную пористую структуру обрабатывают в вакуумной среде углекислого газа (СO) пучком ионов инертного газа аргона с имплантацией ионов аргона в сформированную пористую структуру титана с образованием углеродной алмазоподобной беспористой пленки, при этом имплантацию ионов аргона проводят с энергией 40-130 кэВ и дозой облучения 1,25·10-3,1·10 ион/см, что позволяет получать внутрикостные стоматологические имплантаты с повышенными показателями микротвердости, усталостной прочности и остеоинтеграции. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе.

Известен способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным биоактивным покрытием [Патент РФ 2146535, МПК A61L 27/00, А61С 8/00, опубликован 20.03.2000], состоящий в напылении плазменным методом на титановую основу системы покрытий различной дисперсности и толщины из 5 слоев при этом напыление ведут послойно в режимах, обеспечивающих плавный переход от компактной структуры титановой основы к поверхностному пористому слою.

Недостатком данного изобретения является то, что многокомпонентное, многослойное покрытие имеет различные коэффициенты термического расширения, что не способствует прочному закреплению (адгезии) слоев покрытия. Кроме того, слабая воспроизводимость процесса плазменного напыления ведет к уменьшению процента выхода годных изделий.

Наиболее близким к предлагаемому изобретению является способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием [патент РФ 2074674, МПК: A61F 2/28, опубликован 10.03.1997], включающий изготовление из титана универсальным способом (токарная, фрезерная обработка с последующей чистовой обработкой и химическим обезжириванием поверхности) основы имплантата цилиндрической, пластинчатой или трубчатой формы с последующей пескоструйной обработкой поверхности и нанесение на основу имплантата методом плазменного напыления системы из четырех слоев - двух слоев титана или гидрида титана различной толщины, третьего слоя из механической смеси титана или гидрида титана и гидроксиапатита с соотношением соответственно 60-80 мас % и 20-40 мас % и наружного слоя гидроксиапатита.

Недостатками данного изобретения являются невысокая биосовместимость и остеоинтеграция, хрупкость, недостаточная твердость и усталостная прочность покрытия, недостаточная воспроизводимость состава покрытия по поверхности основы.

Задача изобретения заключается в разработке способа изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием, характеризующихся повышенной микротвердостью и усталостной прочностью внутрикостных имплантатов.

Техническим результатом является повышение микротвердости и усталостной прочности внутрикостных имплантатов за счет создания с применением эффекта блистерингового порообразования пористой структуры поверхности титановой основы без нанесения многослойного покрытия и последующего синтеза на ней углеродной алмазоподобной беспористой пленки, обладающей высокой химической инертностью и микротвердостью, способствующей быстрому росту костной ткани (остеоинтеграции).

Поставленная задача решается тем, что при осуществлении способа изготовления внутрикостного стоматологического имплантата, заключающегося в предварительной подготовке поверхности основы имплантата, изготовленного из титана, включающей механическую обработку титановой основы, затем механическую полировку, очистку поверхности и химическое обезжиривание, новым является то, что после обезжиривания, полированную поверхность титановой основы сначала обрабатывают пучком ионов гелия с имплантацией ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, затем поверхность имплантата со сформированной пористой структурой обрабатывают в вакуумной среде углекислого газа (CO2) пучком ионов инертного газа аргона с имплантацией ионов аргона (Ar+) в сформированную пористую структуру титана с образованием углеродной алмазоподобной беспористой пленки, при этом имплантацию ионов гелия проводят с энергией 100-200 кэВ и дозой 6·1017-6·1018 ион/см2, а имплантацию ионов аргона проводят с энергией 40-130 кэВ и дозой облучения 1,25·1016-3,1·1016 ион/см2.

Изобретение поясняется чертежами, где на фиг. 1 представлена схема имплантации ионов гелия в титановую основу имплантата; фиг. 2 представлена фотография поверхности титановой основы имплантата с размером пор 100-250 мкм после имплантации ионов гелия (He+) с энергией 100-200 кэВ и дозой 6·1017-6·1018 ион/см2; на фиг. 3 - график зависимости плотности пор (N) на поверхности титана от энергии и дозы ионов гелия (He+) (о, Δ - экспериментальные средние значения 20 экспериментов, соответственно); на фиг. 4 - график зависимости диаметра пор (d) от энергии и дозы ионов гелия (He+) (о, Δ - экспериментальные средние значения 20 экспериментов, соответственно); на фиг. 5 - схема синтеза углеродной алмазоподобной беспористой пленки, образованной на пористой поверхности титановой основы при имплантации ионов аргона с энергией 40-130 кэВ и дозой облучения 1,25·1016-3,1·1016 ион/см2 в среде углекислого газа (CO2); на фиг. 6 - график дозовой зависимости микротвердости титана при имплантации ионами аргона (о, Δ - экспериментальные средние значения 20 экспериментов, соответственно); на фиг. 7 - график зависимости влияния имплантации ионов аргона на усталостную прочность титана (о, Δ, • - экспериментальные средние значения 20 экспериментов, соответственно).

Способ осуществляют следующим образом.

Изготавливают основу внутрикостного стоматологического имплантата из титана известными методами токарной и фрезерной обработки, механической полировки (Лясникова А.В., Дударева О.А. Медицинские имплантаты: учеб. пособие / А.В. Лясникова, О.А. Дударева. Москва: Прондо, 2014. - 792 с.).

Очистку поверхности титановой основы имплантата проводят в растворе с содержанием ПАВ, в теплой воде 45°C на установке ультразвуковой очистки ПСБ-Галс при интенсивности ультразвуковых колебаний 1,2 Вт/см, частоте УЗ колебаний - 22 кГц, продолжительности обработки - 3 мин.

Химическое обезжиривание титановой основы имплантата проводят в растворе тринатрийфосфата (30-50 г/л) при температуре раствора 70-90°C, время обработки 3-10 мин.

Полированную поверхность титановой основы после очистки и химического обезжиривания обрабатывают пучком ионов гелия с имплантацией ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата на установке ионного легирования, например, «Везувий-5».

Имплантацию ионов гелия проводят с энергией 100-200 кэВ и дозой 6·1017-6·1018 ион/см2.

При этом гелий подают из баллона в камеру испарения источника ионов установки ионного легирования, например, «Везувий-5», где происходит ионизация гелия эмитированными горячим (2500…3000°C) катодом электронами.

Из образующегося плазменного облака ионы гелия (He+) отбирают (вытягивают) электрическим полем с вытягивающим напряжением, оптимальными значениями которого для ионов гелия являются Uвыт.=5, 10, 15 кВ.

Вытягивающийся из источника ионный (He+) пучок фокусируют, ускоряют в формирователе пучка ионов, и он попадает на поверхность титановых имплантатов, которые закреплены на барабане в приемной камере, в объеме которой создают вакуум до ~10-6 мм рт. ст. с помощью механических и высоковакуумных насосов, которое фиксируют термопарным и ионизационным датчиками вакуума и вакуумметром. Дозиметры, установленные в приемной камере, обеспечивают контроль над дозой имплантации, технологические параметры процесса имплантации задаются ЭВМ установки ионного легирования.

При имплантации легких ионов гелия (He+) в поверхность титана (фиг. 1), в ней возникают дефекты (блистеры) - будущие поры - с характерными размерами (несколько мкм) и большой степенью регулярности (Гусева М.И., Мартыненко Ю.В. Радиационный блистеринг / М.И. Гусева, Ю.В. Мартыненко // Успехи физических наук. Москва: 1981. - Т. 135. - Вып. 4. - 671-689 с.).

При достижении пороговой дозы имплантируемых ионов гелия (He+) происходит вскрытие крышек блистеров и образование пор в поверхности титановой основы (фиг. 2).

Экспериментально полученными оптимальными дозами ионов гелия, необходимыми для проведения процесса порообразования в процессе ионной имплантации, т.е. внедрения ионов гелия в поверхность титановой основы внутрикостного имплантата с целью образования дефектов (блистеров), вскрытия крышек блистеров и образования пор в поверхности титановой основы, являются 6·1017-6·1018 ион/см2 с энергией E=100-200 кэВ (фиг. 3, фиг. 4). При дозах ионов гелия менее 6·1017 ион/см2 и более 6·1018 ион/см2 не происходит формирования достаточно плотной пористой структуры поверхности титановой основы на основе явления блистеринга, снижаются остеоинтеграционные свойства титанового внутрикостного имплантата.

Таким образом, при имплантации ионов гелия с энергией E=100-200 кэВ и дозой 6·1017-6·1018 ион/см2 формируется пористая структура поверхности титановой основы имплантата с размером пор 100-250 мкм. Размеры пор находятся в пределах от d~100-250 мкм с плотностью N~1016-1017см-3 (Тетельбаум Д.И. Ионная имплантация / Д.И. Тетельбаум // Москва: Вестник Нижегородского университета им. Н.И. Лобачевского, 2010. - №5(2). - 250-259 с.) и определяются энергией и дозой имплантации ионов гелия в титановую основу.

Сформированную пористую структуру поверхности титановой основы имплантата обрабатывают в вакуумной среде углекислого газа (СО2) пучком ионов инертного газа аргона с имплантацией ионов аргона в сформированную пористую структуру титана с образованием углеродной алмазоподобной беспористой пленки (фиг.5) на установке ионного легирования, например, «Везувий-5».

Для этого в объеме приемной камеры установки ионного легирования создают вакуум ~10-6 мм рт. ст. с помощью высоковакуумных насосов, который фиксируют ионизационным датчиком высокого вакуума и вакуумметром, далее в приемную камеру через игольчатый клапан из баллона по герметичному трубопроводу подают углеродсодержащий газ, например, оксид углерода (CO2), при этом давление в камере автоматически изменяют в сторону повышения, но не более 10-4 мм рт. ст., так как в более низком вакууме на поверхности адсорбируется сажевое образование, что является недопустимым, и не менее 5·10-5 мм рт. ст., так как при таком значении вакуума уменьшается скорость адсорбции молекул углеродсодержащей среды (CO2), что замедляет процесс образования сплошного слоя углеродосодержащих молекул, необходимого для образования углеродной алмазоподобной беспористой пленки. Оптимальным диапазоном давления (вакуума) для образования углеродной алмазоподобной беспористой пленки является мм рт. ст. Данный процесс повторяется постоянно с целью поддержания заданной величины давления в объеме приемной камеры установки вплоть до завершения набора дозы ионов аргона.

Аргон подают из баллона в камеру испарения источника ионов установки ионного легирования, например, «Везувий-5», где происходит ионизация атомов аргона эмитированными горячим (2500…3000°C) катодом электронами.

Из образующегося плазменного облака ионы аргона (Ar+) отбирают (вытягивают) электрическим полем с вытягивающим напряжением, оптимальными значениями для ионов аргона являются Uвыт.=5, 10, 15 кВ.

По аналогии с ионами гелия, вытягивающийся из источника ионный (Ar+) пучок фокусируют, ускоряют в формирователе пучка ионов и он попадает на пористую поверхность, сформированную в процессе блистерингового порообразования, то есть при имплантации ионов гелия, титановых имплантатов, которые закреплены на барабане в приемной камере в вакуумной среде углекислого газа.

Имплантацию ионов аргона проводят с энергией 40-130 кэВ и дозой облучения 1,25·1016-3,1·1016 ион/см2. При этом толщина образующейся углеродной алмазоподобной беспористой пленки составляет 6-8 нм.

При энергетическом воздействии имплантируемых ионов аргона в углеродсодержащей среде в поверхностном слое адсорбированных атомов углеродсодержащих фрагментов происходят процессы ионизации и диссоциации молекул, приводящие к возникновению заряженных радикалов, процесс синтеза которых стимулируется энергетическим воздействием внедряемых ионов аргона и контролируется поступлением электронов из нижележащего металла титана. По мере увеличения толщины синтезируемого слоя поступление электронов к поверхности реакции затрудняется, и при достижении толщины порядка длины туннелирования электронов рост углеродной алмазоподобной пленки прекращается. Наиболее интенсивно процесс синтеза протекает на участках слоя с меньшей толщиной и порами, что обеспечивает высокую равномерность и беспористость пленки (Перинская И.В. Механизмы влияния ионной имплантации на химическую активность металлов / И.В. Перинская, В.В. Перинский, В.Н. Лясников // Технология металлов. - 2009. - №8. - С. 22-25.)

Механизм синтеза на сформированной поверхностной пористой структуре титана углеродной алмазоподобной беспористой пленки гарантирует высокую адгезию за счет ионного перемешивания фрагментов углеродной алмазоподобной беспористой пленки на поверхности пор титановой основы с приповерхностным слоем титана.

Экспериментально полученными оптимальными дозами ионов аргона, необходимыми для формирования углеродной алмазоподобной беспористой пленки на поверхности пористой структуры титана, являются 1,25·1016-3,1·1016 ион/см2 с энергией 40-130 кэВ. При дозах ионов аргона менее 1,25·1016 ион/см2 и более 3,1·1016 ион/см2 не происходит формирования углеродной алмазоподобной беспористой пленки на поверхности пористой структуры титановой основы имплантата, снижаются микротвердость и усталостная прочность имплантированного ионами аргона пористого титана в среде углекислого газа (CO2), что подтверждается результатами исследования (фиг. 6, фиг 7).

В таблице 1, 2 приведены примеры реализации предлагаемого способа при различных режимах облучения титановой основы, а также полученные результаты измерения микротвердости и усталостной прочности.

Микротвердость титана марки ВТ 1-00 в исходном состоянии составляет 220-230 кгс/мм2 и увеличивается после имплантации ионов аргона (Ar+) до 310-330 кгс/мм2, т.е. на 30%. Максимальное увеличение твердости наблюдается при дозе имплантируемых ионов аргона (Ar+) 1,25·1016-3,1·1016 ион/см2, что связано с образованием радиационных дефектов и, как следствие, с возникновением энергетического барьера и закреплением дислокаций.

Микротвердость поверхностного слоя измеряли методом вдавливания алмазного индентора на цифровом микротвердомере HVS-1000 В при нагрузке 20 гс.

Испытания на усталостную прочность проводили по схеме консольного знакопеременного изгиба до разрушения. Максимальное знакопеременное изгибающее напряжение по сечению образца 240-450 МПа при частоте 22,5 Гц.

Максимальное повышение усталостной прочности происходит при дозе имплантации ионов аргона 1,25·1016-3,1·1016 ион/см2, т.е. той же, что и максимум дозовой зависимости твердости. Из графика на фиг. 7 видно, что усталостная прочность зависит от дозы имплантируемых ионов аргона и практически не зависит от энергии ионов аргона в исследуемом диапазоне.

Очевидно, это связано с формированием углеродной алмазоподобной беспористой пленки на поверхности пористой структуры титановой основы имплантата. Удаление этого слоя химическим травлением приводит к ухудшению усталостных свойств и уменьшению микротвердости.

Таким образом, разработан способ изготовления внутрикостных стоматологических имплантатов, с повышенными остеоинтеграционными свойствами, которые подтверждаются тем, что при введении в костную ткань титанового имплантата со сформированной пористой структурой титановой основы с размером пор 100-250 мкм и сформированной на ее поверхности углеродной алмазоподобной беспористой пленкой наблюдается эффективное прорастание кости в поры поверхности (остеоинтеграция), так как отростки клеток костной ткани, прорастающие в образованные поры поверхности имплантата, имеют размеры (диаметр) 100-250 мкм, что обеспечивает прочное закрепление внутрикостного имплантата и длительное его функционирование в организме человека.

Предлагаемое техническое решение позволяет изготавливать внутрикостные стоматологические имплантаты с пористой поверхностной структурой титановой основы и сформированной на ее поверхности углеродной алмазоподобной беспористой пленки с повышенными показателями микротвердости и усталостной прочности, что подтверждается тем, что экспериментально полученные результаты измерения микротвердости изготовленных по описанной технологии имплантатов составляют 310-330 кгс/мм2, что значительно приближается к микротвердости костной ткани (400-450 кгс/мм2), тогда как микротвердость титана в исходном состоянии составляет всего 220-230 кгс/мм2. Экспериментально полученные результаты измерения усталостной прочности свидетельствуют о ее повышении на ~22% относительно результатов измерения усталостной прочности титана в исходном состоянии, что важно, так как внутрикостные стоматологические имплантаты, установленные в ротовой полости на протяжении всего срока своего функционирования, испытывают большие знакопеременные нагрузки (жевание, речь, мимика).


СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ
Источник поступления информации: Роспатент

Showing 11-20 of 179 items.
20.08.2015
№216.013.710a

Способ насыщения пористого покрытия эндопротезов

Изобретение относится к медицине, а именно к травматологии и ортопедиии, и может быть использовано при костно-пластических операциях для доставки лекарственных средств в зону дефекта и их пролонгированного воздействия в очаге поражения. Способ насыщения пористого покрытия эндопротезов включает...
Тип: Изобретение
Номер охранного документа: 0002560508
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7317

Устройство для пропитки пористых изделий

Изобретение относится к оборудованию по пропитке пористых материалов и изделий широкого промышленного назначения. Устройство содержит рабочую камеру, подключенную к ней вакуумную систему, систему нагнетания и слива пропиточного раствора, а также устройство для размещения пористых изделий. При...
Тип: Изобретение
Номер охранного документа: 0002561033
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8be2

Способ нанесения покрытий на обработанные поверхности изделий из титана и его сплавов

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567417
Дата охранного документа: 10.11.2015
10.04.2016
№216.015.2f69

Жидкостекольная композиция

Изобретение относится к области производства строительных материалов, а именно к составам полимерсиликатных смесей, предназначенных для изготовления конструктивных элементов, работающих в условиях агрессивных сред. Техническим результатом является повышение водостойкости и биостойкости...
Тип: Изобретение
Номер охранного документа: 0002580539
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fc2

Устройство для образования винтового профиля на стенках скважин под буронабивные сваи (дополнительное)

Изобретение относится к строительству, а именно к устройствам, повышающим несущую способность буронабивных свай, и найдет применение при строительстве фундаментов зданий и сооружений. Устройство для образования винтового профиля на стенках скважин под буронабивные сваи, содержащее рабочий...
Тип: Изобретение
Номер охранного документа: 0002580120
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34f7

Свч-печь

Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При...
Тип: Изобретение
Номер охранного документа: 0002581689
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.350e

Способ стабилизации параметров шарикоподшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число...
Тип: Изобретение
Номер охранного документа: 0002581414
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.354f

Способ правки длинномерных деталей

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который...
Тип: Изобретение
Номер охранного документа: 0002581692
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
Showing 11-20 of 81 items.
20.08.2015
№216.013.710a

Способ насыщения пористого покрытия эндопротезов

Изобретение относится к медицине, а именно к травматологии и ортопедиии, и может быть использовано при костно-пластических операциях для доставки лекарственных средств в зону дефекта и их пролонгированного воздействия в очаге поражения. Способ насыщения пористого покрытия эндопротезов включает...
Тип: Изобретение
Номер охранного документа: 0002560508
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7317

Устройство для пропитки пористых изделий

Изобретение относится к оборудованию по пропитке пористых материалов и изделий широкого промышленного назначения. Устройство содержит рабочую камеру, подключенную к ней вакуумную систему, систему нагнетания и слива пропиточного раствора, а также устройство для размещения пористых изделий. При...
Тип: Изобретение
Номер охранного документа: 0002561033
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8be2

Способ нанесения покрытий на обработанные поверхности изделий из титана и его сплавов

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида...
Тип: Изобретение
Номер охранного документа: 0002567417
Дата охранного документа: 10.11.2015
10.04.2016
№216.015.2f69

Жидкостекольная композиция

Изобретение относится к области производства строительных материалов, а именно к составам полимерсиликатных смесей, предназначенных для изготовления конструктивных элементов, работающих в условиях агрессивных сред. Техническим результатом является повышение водостойкости и биостойкости...
Тип: Изобретение
Номер охранного документа: 0002580539
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fc2

Устройство для образования винтового профиля на стенках скважин под буронабивные сваи (дополнительное)

Изобретение относится к строительству, а именно к устройствам, повышающим несущую способность буронабивных свай, и найдет применение при строительстве фундаментов зданий и сооружений. Устройство для образования винтового профиля на стенках скважин под буронабивные сваи, содержащее рабочий...
Тип: Изобретение
Номер охранного документа: 0002580120
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.309d

Способ обработки поверхности фторсодержащей резины

Изобретение относится к технологии поверхностной обработки фторсодержащей резины для крепления ее к фторполимерам и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности. Способ обработки поверхности фторсодержащей резины для крепления...
Тип: Изобретение
Номер охранного документа: 0002580722
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34f7

Свч-печь

Изобретение относится к области электротехники, в частности к СВЧ нагревательным установкам для нагрева диэлектрических материалов. СВЧ-печь содержит рабочую камеру с дверцей, источник СВЧ энергии с выводом и устройство распределения энергии, выполненное в виде прямоугольного волновода. При...
Тип: Изобретение
Номер охранного документа: 0002581689
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.350e

Способ стабилизации параметров шарикоподшипника

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число...
Тип: Изобретение
Номер охранного документа: 0002581414
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.354f

Способ правки длинномерных деталей

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который...
Тип: Изобретение
Номер охранного документа: 0002581692
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.357d

Способ формирования серебросодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Описан способ получения серебросодержащего биопокрытия титанового имплантата, заключающийся в предварительной...
Тип: Изобретение
Номер охранного документа: 0002581825
Дата охранного документа: 20.04.2016
+ добавить свой РИД