×
13.01.2017
217.015.728e

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ РАДИАЦИОННОЙ СТОЙКОСТИ И СТАБИЛИЗАЦИИ СВЕТОПРОПУСКАНИЯ ГЕРМАНО-СИЛИКАТНЫХ СТЕКЛОВОЛОКОН

Вид РИД

Изобретение

Аннотация: Изобретение относится к германо-силикатным стекловолокнам. Технический результат изобретения заключается в снижении уровня радиационно-наведенного поглощения, повышении трансмиссионных свойств и надежности Ge-SiO стекловолокон, работающих в радиационных полях. Германо-силикатные стекловолокна облучают на воздухе пучком электронов с энергией 10 МэВ, при токе 1000 мкА в несколько этапов, доводя дозовую нагрузку до 20, 30, 40 и 50 кГр с промежуточными отжигами стекловолокон при комнатной температуре в течение 2-3 часов после каждого этапа облучения. 1 табл.

Изобретение относится к области технологий, улучшающих/стабилизирующих трансмиссионные характеристики стекловолокон, относится к области технологий, повышающих радиационную стойкость и стабилизирующих светопропускание германо-силикатных стекловолокон, используемых в волоконно-оптических линиях связи и в других устройствах волоконной оптики: в волоконно-оптических гироскопах, датчиках вибрации и других волоконно-оптических датчиках внешних физических воздействий.

Радиационная стойкость германо-силикатных стекловолокон и их светопропускание определяют трансмиссионные свойства и надежность оптоволоконных линий связи и других оптоволоконных устройств, особо устройств, работающих в радиационных полях. Актуальной проблемой остается разработка технологий, обеспечивающих создание работающих в радиационных полях стекловолокон с высоким уровнем светопропускания, и технологий, снижающих уровень радиационно-наведенного поглощения (РНП) в волокнах. Ведется поиск способов снижения РНП, возникающего в германо-силикатных и других стекловолокнах под действием радиации, повышения их радиационной стойкости и стабилизации светопропускания.

Известен способ MCVD [1] получения стекловолокон с фторсиликатной оболочкой и сердцевиной из фторсиликатного или нелегированного кварцевого стекла, вызывающий повышение радиационной стойкости стекловолокон. Однако известный способ не обеспечивает повышения радиационной стойкости и стабилизации светопропускания стекловолокон: РНП в MCVD-световодах (зависящее от режимов синтеза сердцевины и режимов синтеза фторсиликатной светоотражающей оболочки) для случая воздействия на них гамма-излучения повышенных доз (дозой до 8,1 кГр [1]) оказалось высоким, снижающим уровень светопропускания до 4,5 Дб/км. Это в два раза хуже, чем радиационная стойкость стекловолокон, серийно выпускаемых фирмой «Фуджикура» для диапазона доз до 10 кГр (данные приведены в работе [1] на рис. 1, кривые 6 и 7).

Известен способ [2] оценки радиационной стойкости стекловолокон различных типов по величине регистрируемого для них РНП и сравнения его с РНП эталона, в качестве которого выбрано волокно SMF-28e+™ со световедущей сердцевиной, легированной германием (волокно фирмы «Corning»). Известные данные по радиационной стойкости волокон фирмы «Corning» приведены в [5]. Однако для анализируемого в работе [2] эталонного волокна фирмы «Corning», описанного в [5], и волокон, созданных другими производителями, например, для волокна типа «PANDA» [2] со световедущей сердцевиной, легированной Ge (5 мол.%), величина РНП при росте дозы облучения γ-излучением от 2·104 до 1,8·105 рентген при мощности дозы 4,3 Р/с непрерывно возрастала от 4 до 8 и даже до 16 Дб/км для различных типов стекловолокон. Таким образом, известный способ оценки радиационной стойкости различных стекловолокон [2] путем их сравнения с эталоном при использовании в качестве эталона волокна фирмы «Corning» не обеспечивает повышения их радиационной стойкости до уровня радиационной стойкости германо-силикатных стекловолокон фирмы Фуджикура, равной 2 Дб/км в диапазоне доз гамма-излучения до 10 кГр при мощности дозы 1,6 Гр/с. Исследований воздействия более высоких доз гамма-излучения на трансмиссионные свойства германо-силикатных волокон фирмы Фуджикура и волокон других типов в работах [1-5] не проводилось. Не проводились также исследования по влиянию других типов корпускулярного излучения, таких как электронные пучки, особо пучки высоких энергий (10 МэВ), на трансмиссионные свойства стекловолокон. Не известно влияние электронных пучков высоких энергий в случае высоких доз до 20-50 кГр на светопропускание, радиационную стойкость и на стабилизацию светопропускания германо-силикатных стекловолокон.

Задачей изобретения является разработка способа повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон.

Задача изобретения решается за счет того, что для повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон их облучают в атмосфере воздуха сильноточным пучком электронов с энергией 10 МэВ при токе пучка электронов 1000 мкА, причем облучение проводят в несколько этапов, последовательно доводя дозовую нагрузку до доз 20, 30, 40 или 50 кГр с промежуточными отжигами стекловолокон для каждой дозовой нагрузки в течение 2-3 часов при комнатной температуре.

Сущность предлагаемого изобретения связана не только с выбором типа радиационного воздействия: вместо гамма-лучей для радиационного воздействия на германо-силикатные волокна используют сильноточный пучок электронов с энергией 10 МэВ при токе пучка электронов 1000 мкА, и не только с выбором повышенного диапазона доз облучения, но и с режимом облучения, которое проводят в несколько этапов до доз 20, 30, 40 или 50 кГр, сущность предлагаемого изобретения связана также с тем, что в конце каждого этапа облучения проводят промежуточный отжиг облученных германо-силикатных стекловолокон в течение 2-3 часов при комнатной температуре.

От гамма-облучения сделан переход к облучению волокон корпускулярным излучением - электронами с энергией 10 МэВ и током пучка 1000 мкА в диапазоне повышенных доз, доводя последовательно дозовую нагрузку до 20, 30, 40, 50 кГр, при которых происходят эффекты радиационного отжига и снижение РНП. Для их усиления в предлагаемом техническом решении радиационное воздействие сочетано с дополнительным технологическим фактором, с температурным отжигом, проводимым после каждого этапа набора доз, ведущим к снижению РНП за счет отжига дефектов и увеличению прозрачности облучаемого стекловолокна.

Пример осуществления способа

В качестве образцов стекловолокон использовали коммерческие кварцевые стекловолокна марки Fujikura 7 SM, стандартные, одномодовые с жилой, изготовленной из особо чистого кварца, легированного Ge. Оболочка - особо чистый SiO2. Покрытие - двухслойный акрилат. Содержание и профиль распределения примеси германия (3,61 вес.%) в жиле и оболочке исследуемых стекловолокон предварительно определяли по оригинальному способу, разработанному авторами настоящего технического решения. (Способ определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон. Патент РФ №2548716, зарегистрирован 04 марта 2015 г. по заявке на изобретение №2013142549 от 17.09.2013. Авторы: А.В. Ищенко, Е.К. Чистякова, А.Н. Штыков, Л.Н. Шалимов, Н.Г. Манько, Г.В. Шестаков, И.А. Вайнштейн, В.Ю. Иванов, А.Н. Черепанов и Б.В. Шульгин).

Аппаратура для облучения включала в себя отечественный линейный ускоритель электронов модели УЭЛР-10-10 С. Энергия ускоренных электронов составляла 10 МэВ, мощность ускорителя 10 кВт. Ток пучка электронов 1000 мкА. Ускоритель установлен и функционирует в специальном зале при кафедре экспериментальной физики в Инновационном внедренческом центре радиационной стерилизации физико-технологического института Уральского федерального университета. Стекловолокно SiO2-GeO2, известное своей повышенной радиационной стойкостью [1], длиной 4 м, закрепленное в виде витков на картонном диске (диаметром около 20 см), размещалось на рабочем конвейере ускорителя в зале доступа персонала, после чего включали конвейер и стекловолокно со скоростью 1 м/мин доставлялось в зону облучения. Дозы электронного облучения, задаваемые с помощью специальной программы, набирались последовательно. Они были равны 20, 30, 40 и 50 кГр. После каждого облучения исследуемое волокно быстро доставлялось в Инновационный Центр инфракрасной волоконной оптики химико-технологического института УрФУ, где проводился отжиг образца при комнатной температуре и определялась светопроводимость волокна на специальном оптическом стенде фирмы STANDA, на котором размещен оптический тестер японской фирмы EXFO модели FOT-300. Оптический тестер включает в себя источник излучения (лазер с длинной волны 1,31 мкм) и приемник излучения на длине волны 1,31 мкм. Измеряли уровень мощности (несколько милливатт) лазерного излучения (прошедшего через облученное волокно) с длиной волны 1,31 мкм. Предварительно измерения проводились для необлученного образца стекловолокна и облученного до дозы 10 кГр (такая доза ранее применялась в случае облучения стекловолокон гамма-излучением).

Измерения светопроводимости проводили на специальном оптическом стенде фирмы STANDA оптическим тестером японской фирмы EXFO модели FOT-300 путем измерения уровня мощности лазерного излучения с длиной волны 1,31 мкм, пропускаемого испытуемым одномодовым германо-силикатным стекловолокном. Проводили через 2-3 часа после окончания процедуры набора первой дозы облучения, когда процессы отжига в волокне в основном заканчивались, а затем еще несколько раз после каждого очередного облучения стекловолокна спустя 2-3 часа после окончания процедуры каждого облучения. Использовался один и тот же образец для всех доз облучения. Необходимость проведения таких измерений была обусловлена замеченным улучшением светопропускания радиационно-модифицированных волокон по мере их выдержки (отжига) при комнатной температуре после облучения в течение нескольких, предпочтительно 2-3, часов. Более длительный отжиг в течение 3-4 часов никаких преимуществ не давал.

Полученные результаты измерений светопроводимости для диапазона доз (10, 20, 30 и 50 кГр) приведены в таблице. Уже после первой повышенной дозы облучения одномодовых германо-силикатных стекловолокон (20 кГр) была замечена стабилизация (улучшение) их прозрачности в сравнении с дозой 10 кГр. Если до радиационного воздействия пропускаемая через стекловолокно мощность пробного светового сигнала составляла 2,7 мВт, то после повышенного радиационного воздействия она выросла и оказалась равной 3,04 мВт. Эта величина (см. таблицу) мало изменялась и после следующих этапов облучения до доз 30, 40 и 50 кГр. (Для дозы 40 кГр получены те же данные, что и для дозы 30 кГр, они в таблице не приведены). Это свидетельствует о стабилизации трансмиссионных свойств стекловолокон: их светопропускание не ухудшается, а стабилизируется и даже улучшается на 14% в сравнении с необлученным волокном длиной 4 м, а в сравнении с волокнами других типов, например MCVD [1], улучшается более чем на 45%. Рост пропускаемой мощности связан с естественным отжигом образцов, происходящим при комнатной температуре и снижающим уровень дефектов (кластеров типа Si-Si) в жиле и оболочке стекловолокна. Для дозы 50 кГр мощность выходного сигнала на выходе остается на уровне 3,1 мВт. Ухудшения прозрачности волокна не замечено. Более высокие дозы облучения приводят к снижению светопропускания германо-силикатных стекловолокон. Перерасчет на радиационно-наведенное поглощение (РНП) для волокон фирмы Фуджикура сделан с использованием данных [1, 5]. Аналогичные результаты получены для катушки волокон фирмы Фуджикура длиной до 600 м с габаритами около 10×30 см.

Обнаруженные эффекты стабилизации светопропускания, а также улучшения радиационной стойкости стекловолокон фирмы Фуджикура после их поэтапного облучения электронами до доз 20, 30, 40 и 50 кГр с промежуточными отжигами при комнатной температуре после каждой дозы облучения, связанные с процессами радиационного отжига (в процессе облучения) и процессами промежуточного термического отжига стекловолокон, существенно улучшают их радиационную стойкость к дозам облучения, вплоть до высоких доз 50 кГр, стабилизируют светопропускание и открывают возможность создания на базе облученных стекловолокон эффективных датчиков и устройств волоконной оптики многоцелевого назначения, способных работать в высокодозных радиационных полях с дозовой нагрузкой до 50 кГр.

Проводимая по предлагаемому способу радиационно-термическая обработка германо-силикатных стекловолокон действует как «прививка» против радиационных «стрессов», испытываемых волокнами при радиационных воздействиях, особо при радиационных атаках, стабилизирует светопропускание и в целом стабилизирует трансмиссионные свойства стекловолокон и волоконных устройств, увеличивает их надежность (и, соответственно, срок службы). Предложенный способ пригоден для улучшения параметров не только одномодовых, но и многомодовых стекловолокон и волоконных Ge-SiO2 кабелей, что является дополнительным преимуществом предлагаемого способа.

Технический эффект: снижение уровня радиационно-наведенного поглощения, повышение трансмиссионных свойств и надежности Ge-SiO2 стекловолокон, работающих в радиационных полях.

Источники информации

1. Кашайкин П.Ф., Салганский М.Ю., Томашук А.Л., Абрамов А.Л., Хопин В.Ф., Гурьянов А.Н., Нищев К.Н., Дианов Е.М. Повышение радиационной стойкости волоконных световодов в технологии MCVD. Фотон-экспресс, №6 (110), 2013, с. 152-153.

2. Долгов И.И., Долгов П.И, Степанов Е.А., Иванов Г.А., Акопов С.Г. Реализация концепции сравнительного эталона радиационно-наведенного оптического поглощения на волокне SMF-28e+™. Фотон-экспресс, №6 (110), 2013, с. 1545-157.

3. Долгов И.И., Степанов Е.А. Иерархия CWDM каналов с точки зрения радиационной стойкости. Фотон-экспресс, №6 (110) 2013, с. 299.

4. Taylor T.V. J. of Lightwave Technology, v. 8, №6. 2011.

5. Wijnands Th. et al., J. of Lightwave Technology, v. 29, 2011, p. 3393-3400.

Способ повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон путем их облучения на воздухе в полях радиации, отличающийся тем, что облучение германо-силикатных стекловолокон проводят пучком электронов с энергией 10 МэВ, при токе 1000 мкА в несколько этапов, доводя дозовую нагрузку до 20, 30, 40 и 50 кГр с промежуточными отжигами стекловолокон при комнатной температуре в течение 2-3 часов после каждого этапа облучения.
Источник поступления информации: Роспатент

Showing 121-130 of 239 items.
04.10.2018
№218.016.8e6c

Способ прокатки рельсов

Изобретение относится к области прокатки рельсов. Способ включает прокатку в реверсивных клетях дуо чернового рельсового раската и дальнейшую его прокатку в непрерывно-реверсивной группе клетей, состоящей из двух универсальных четырехвалковых клетей, расположенной между ними вспомогательной...
Тип: Изобретение
Номер охранного документа: 0002668626
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.904d

Устройство для получения пленок

Изобретение относится к области ионно-плазменного напыления многослойных пленок, в частности к устройству для получения многослойных пленок. Устройство содержит экранированную катод-мишень и подложкодержатель, расположенный в горизонтальном магнитном поле. При распылении центр подложки...
Тип: Изобретение
Номер охранного документа: 0002669259
Дата охранного документа: 09.10.2018
27.10.2018
№218.016.9750

Мобильный гелиоопреснитель

Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре...
Тип: Изобретение
Номер охранного документа: 0002670928
Дата охранного документа: 25.10.2018
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
19.12.2018
№218.016.a856

Способ извлечения металлов из растворов

Изобретение относится к металлургии цветных металлов, в частности к извлечению благородных металлов из цианистых растворов цинком или алюминием. Способ включает контактирование растворов с электроотрицательным металлом, загруженным в донную конусную часть цементатора. Раствор подают снизу...
Тип: Изобретение
Номер охранного документа: 0002675135
Дата охранного документа: 17.12.2018
30.12.2019
№218.016.adb5

Имитатор радиолокационной цели

Изобретение относится к радиотехнике, а именно к радиолокации, и может быть использовано для настройки технических параметров радиолокационных станций (РЛС) на заводе-изготовителе и их проверки при регламентных работах в течение всего срока эксплуатации. Наиболее предпочтительно его...
Тип: Изобретение
Номер охранного документа: 0002676469
Дата охранного документа: 29.12.2018
18.01.2019
№219.016.b134

Способ изготовления труб

Изобретение относится к металлургии, к изготовлению стальных горячедеформированных труб и может использоваться при производстве труб горячей прокаткой на трубопрокатных агрегатах. Способ включает нагрев и прошивку заготовки с получением толстостенной гильзы, деформацию гильзы на оправке с...
Тип: Изобретение
Номер охранного документа: 0002677404
Дата охранного документа: 16.01.2019
19.01.2019
№219.016.b1be

Антенная решетка свч с щелями переменной геометрии

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Антенная решетка СВЧ содержит дуговой волновод с вырезанными на внешней его стороне поперечными щелями. Длина щелей убывает по линейному или...
Тип: Изобретение
Номер охранного документа: 0002677496
Дата охранного документа: 17.01.2019
17.02.2019
№219.016.bbc6

Способ кучного выщелачивания золота

Изобретение относится к гидрометаллургии и может быть использовано при кучном выщелачивании золота из руд, концентратов и хвостов обогащения. Способ кучного выщелачивания золота включает обработку минерального сырья выщелачивающим раствором, окомкование, закладку окомкованной руды в штабель,...
Тип: Изобретение
Номер охранного документа: 0002680120
Дата охранного документа: 15.02.2019
Showing 111-119 of 119 items.
13.12.2019
№219.017.ecf7

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая...
Тип: Изобретение
Номер охранного документа: 0002708814
Дата охранного документа: 11.12.2019
14.12.2019
№219.017.edf0

Способ получения волоконных сборок на основе поликристаллических инфракрасных световодов

Изобретение относится для применений в различных областях специальной волоконной оптики на основе инфракрасных (ИК) волоконных сборок, изготовленных из фото- и радиационно-стойких световодов новой системы AgBr – (TlBrI). Способ получения волоконных сборок на основе поликристаллических...
Тип: Изобретение
Номер охранного документа: 0002708900
Дата охранного документа: 12.12.2019
19.12.2019
№219.017.ef4d

Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов

Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации...
Тип: Изобретение
Номер охранного документа: 0002709371
Дата охранного документа: 17.12.2019
12.04.2023
№223.018.4450

Способ получения субмикронных кристаллов нитрида алюминия

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также...
Тип: Изобретение
Номер охранного документа: 0002738328
Дата охранного документа: 11.12.2020
12.04.2023
№223.018.4578

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам прозрачным в видимом, инфракрасном (0,5 – 50,0 мкм), терагерцовом и миллиметровом диапазонах – 0,05 – 10,0 ТГц, что соответствует длинам волн 6000,0 – 30,0 мкм. Терагерцовый кристалл согласно изобретению характеризуется тем, что он выполнен...
Тип: Изобретение
Номер охранного документа: 0002756582
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.457e

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, а именно к кристаллам востребованных для применения в медицине, фармацевтике, таможенном дистанционном контроле и в других областях. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых...
Тип: Изобретение
Номер охранного документа: 0002756580
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.4581

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, используемым в производстве терагерцовой оптики. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых растворов системы AgCl – AgBr – TlI и содержит хлорид, бромид серебра и иодид...
Тип: Изобретение
Номер охранного документа: 0002756581
Дата охранного документа: 01.10.2021
15.05.2023
№223.018.5971

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
15.05.2023
№223.018.5972

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
+ добавить свой РИД