×
12.01.2017
217.015.5e9b

Результат интеллектуальной деятельности: ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА

Вид РИД

Изобретение

№ охранного документа
0002590704
Дата охранного документа
10.07.2016
Аннотация: Изобретение относится к области биотехнологии, конкретно к технологии получения генно-инженерных конструкций для экспрессии трансгенов в клетках млекопитающих, и может быть использовано для рекомбинантной продукции тромбоцитарного фактора роста человека. Для эффективной экспрессии в клетках млекопитающих оптимизирован ген тромбоцитарного фактора роста человека (PDGF-B), последовательность нуклеотидов которого представлена на фиг. 1. 3 ил., 1 пр.

Изобретение относится к области биотехнологии, технологии получения генно-инженерных конструкций для экспрессии трансгенов в клетках млекопитающих in vitro и in vivo с целью их применения в клеточной инженерии и в генной терапии. Изобретение представляет собой модифицированную последовательность гена В-полипептидной цепи тромбоцитарного фактора роста (PDGF-B) человека, включаемого в состав генно-инженерных векторов в качестве одного из фрагментов.

Тромбоцитарные факторы роста представляют собой группу ростовых факторов, играющих важную роль в эмбриогенезе, а также в процессах репарации и регенерации поврежденных тканей. Они стимулируют пролиферативную и миграционную активность мезенхимальных клеток, являются кофактором других ростовых факторов, стимулируют секреторную активность клеток, продукцию ими белков внеклеточного матрикса, таких как фибронектин, коллаген, протеогликаны. Эти свойства делают тромбоцитарные факторы роста привлекательными для использования в различных биотехнологиях, в том числе генной и клеточной терапии, при производстве биотрансплантатов.

Тромбоцитарные факторы роста являются димерами, состоящими из полипептидных цепей, связанных дисульфидными связями. Существуют четыре гена PDGF, кодирующие PDGF-A, PDGF-B, PDGF-C и PDGF-D полипептидные цепи (Linda Fredriksson, Hong Li, Ulf Eriksson. Cytokine & Growth Factor Reviews 15 (2004) 197-204). PDGF-B экспрессируется в эндотелиальных клетках, мегакариоцитах и нейронах (Hellström M, Kalén M, Lindahl Ρ, Abramsson A, Betsholtz С. Development 1999; 126:3047-55). Он является одним из важнейших факторов ангиогенеза. PDGF-BB стимулирует миграцию перицитов и гладкомышечных клеток в места образования новых сосудов и тем самым способствует стабилизации вновь сформированных капилляров (Banfi A. von Degenfeld G. Gianni-Barrera R. Rednato S. Merchant MJ. McDonald DM. Blau HM. FASEB J. 2012 Jun; 26(6):2486-97; Gaengel K., Genové G., Armulik Α., Betsholtz С. (2009) Arterioscler. Thromb. Vase. Biol. 29, 630-638).

Перспективы генной терапии в лечении заболеваний, связанных с нарушением кровоснабжения, продемонстрированы как в экспериментальных, так и в клинических исследованиях (Ylä-Herttuala S., Rissanen Т.Т., Vajanto I., Hartikainen J.J. Am. Coll. Cardiol., 2007, vol. 49, pp. 1015-1026; Banfi A. von Degenfeld G. Gianni-Barrera R. Reeinato S. Merchant MJ, McDonald DM. Blau HM. FASEB J. 2012 Jun; 26(6):2486-97).

Технической задачей, решаемой авторами настоящего изобретения, является создание модифицированной последовательности гена PDGF-B, которая при ее включении в состав генно-инженерного вектора позволяла бы достичь более высокого уровня экспрессии соответствующего белка в клетках, трансфицированных данным вектором.

Технический результат достигался модификацией природной последовательности гена PDGF-B, в основе которой лежала вырожденность генетического кода. Последовательность модифицировали таким образом, чтобы триплеты нуклеотидов, кодирующие некоторые из аминокислот белковой последовательности тромбоцитарного фактора роста, встречались в генах человека наиболее часто. При этом использовали опубликованные в открытых источниках данные по частотам встречаемости кодонов (http://www.kazusa.or.jp/codon/).

На Фиг. 1 представлена последовательность нуклеотидов гена PDGF-Bopt (средние строки) в сравнении с последовательностью нуклеотидов природного гена PDGF-B (верхние строки). Показана также последовательность аминокислот кодируемого белкового продукта - тромбоцитарного фактора роста человека (нижние строки). Серым фоном в последовательности гена PDGF-Bopt выделены триплеты нуклеотидов, отличные от таковых в природной последовательности.

На Фиг. 2 приведена функциональная карта плазмиды pVAX1-PDGF-Bopt.

На Фиг. 3 представлены результаты количественного определения белка PDGF-BB человека в среде культивирования клеток линии НЕК293-Т, трансфицированных плазмидами pVAX1, pVAX1-PDGF-B, pVAX1-PDGF-Bopt.

Синтез оптимизированного гена PDGF-Bopt и конструирование плазмиды осуществляли с помощью стандартной технологии и оборудования, применяемых для решения подобных задач в генной инженерии (Watson J.D., Gilman M., Witkowski J., Zoller M. - Recombinant DNA, Scientific American Books, New York, 1992).

Дизайн оптимизированной последовательности нуклеотидов, кодирующей тромбоцитарный фактор роста человека, проводили на основе базы данных частоты встречаемости кодонов у разных организмов, доступной на вэб-сайте http://www.kazusa.or.jp/codon/. Среди триплетов нуклеотидов, кодирующих аминокислоты белковой последовательности природного гена PDGF-B, выявляли такие, которые редко встречаются в генах человека. Выявленные редкие триплеты, а также соседние с ними триплеты заменяли на триплеты, кодирующие ту же аминокислоту, но при этом встречающиеся в генах человека наиболее часто. Благодаря вырожденности генетического кода все аминокислоты природного гена тромбоцитарного фактора роста человека остались неизмененными. Полученная последовательность нуклеотидов представлена на Фиг. 1.

Плазмиду, несущую оптимизированный ген PDGF-Bopt, получали методом генно-инженерного конструирования, как описано ниже на примере плазмиды pVAX1-PDGF-Bopt.

Химически синтезировали следующие олигонуклеотиды:

Смешивали их (по 2 мкМ каждого) в лигазном буфере и кинировали. После инактивации киназы полученную смесь (смесь 1) смешивали с равным объемом смеси 2, представляющей собой следующие синтезированные олигонуклеотиды (также по 2 мкМ) в лигазном буфере:

Прогревали на 95°С в течение 1 мин и давали медленно остыть до комнатной температуры для медленного отжига олигонуклеотидов. Далее полученную смесь разводили в 5 раз 1х лигазным буфером и ставили реакцию лигирования на ночь. На следующий день лигазную смесь разводили в 5 раз и подвергали ее ПЦР со следующими концевыми праймерами:

Разделение и идентификацию продуктов реакции осуществляли методом электрофореза в 1,5% агарозном геле. Далее вырезали из геля основную полосу, соответствующую целевому продукту реакции, проводили экстракцию ДНК и клонировали ее в коммерчески доступную плазмиду pVAX1, расщепленную рестриктазами EcoR1 и EcoRV, с получением плазмиды pVAX1-PDGF-Bopt. Встраивание последовательности оптимизированного PDGF-B и ее идентичность подтверждали рестриктным анализом и секвенированием.

Эффективность заявляемого изобретения иллюстрируется следующим примером.

Пример. Клетки НЕК293Т, культивируемые в 6-луночной плашке в среде DMEM, содержащей 10% эмбриональной телячьей сыворотки, трансфицировали плазмидой pVAX1-PDGF-Bopt, несущей оптимизированный ген тромбоцитарного фактора роста человека (PDGF-Bopt), или контрольными плазмидами pVAX1-PDGF-B (кодирует природный ген тромбоцитарного фактора роста человека) и pVAX1 (пустая плазмида). Для трансфекции клеток в одной лунке плашки брали 2,5 мкг ДНК и 7,5 мкл реагента Lipofectamine 2000 (Invitrogen), процедуру проводили в соответствии с протоколом производителя. Через 24 ч после трансфекции культуральную среду заменяли на свежую и инкубировали клетки в течение 48 часов. Концентрацию гомодимера тромбоцитарного фактора роста человека В (PDGF-BB) в среде культивирования клеток определяли методом иммуноферментного анализа с использованием набора реагентов Human PDGF-BB Quantikine ELISA Kit (R&D Systems) в соответствии с протоколом производителя.

Результаты измерений представлены на Фиг. 3, где отражена средняя концентрация гомодимера тромбоцитарного фактора роста ВВ (PDGF-BB) в среде культивирования клеток линии НЕК293Т, трансфицированных плазмидой pVAX1, pVAX1-PDGF-B или плазмидой pVAX1-PDGF-Bopt.

Иммуноферментный анализ показал, что в условиях эксперимента концентрация PDGF-BB в среде культивирования клеток, трансфицированных вектором с оптимизированной последовательностью гена PDGF, составляла 1129±233,3 нг/мл, что в 4,01 раза выше, чем в группе «pVAX1-PDGF-B» (281,4±34,8 нг/мл). Концентрация белка в группе «pVAX1» была ниже порога чувствительности метода.

Ген тромбоцитарного фактора роста человека, оптимизированный для экспрессии в клетках млекопитающих, который представлен последовательностью нуклеотидов, приведенной на Фиг. 1.
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
ГЕН PDGF-Bopt ТРОМБОЦИТАРНОГО ФАКТОРА РОСТА ЧЕЛОВЕКА
Источник поступления информации: Роспатент

Showing 21-21 of 21 items.
20.02.2019
№219.016.c064

Способ одновременного днк-тестирования на наличие полиморфизмов н63d и c282y в гене hfe, связанных с наследственным гемохроматозом

Изобретение относится к области молекулярной биологии и может быть использовано в медицине. Предложен усовершенствованный способ одновременного генотипирования полиморфизмов H63D и C282Y в гене HFE с помощью метода ПЦР в реальном времени с флуоресцентной детекцией. Новый способ отличается...
Тип: Изобретение
Номер охранного документа: 0002304170
Дата охранного документа: 10.08.2007
Showing 151-160 of 180 items.
19.01.2018
№218.016.00a7

Спиро[2.3]гексановые аминокислоты - конформационно-жесткие аналоги γ-аминомасляной кислоты - и способы их получения

Изобретение относится к 5-аминоспиро[2.3]гексан-1-фосфоновой кислоте указанной ниже формулы, которая является конформационно-жестким аналогом γ-аминомасляной кислоты и обладает психотропным действием. Изобретение относится также к способу получения 5-аминоспиро[2.3]гексан-1-фосфоновой кислоты....
Тип: Изобретение
Номер охранного документа: 0002629357
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0268

Способ получения мелкокристаллического алюмината магния

Изобретение относится к области синтеза мелкокристаллического алюмината магния, используемого в качестве сырья для изготовления монокристаллов и светопропускающей алюмомагниевой керамики. Способ включает обработку в автоклаве паром воды исходной смеси, включающей взятые в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002630112
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0367

Моноклональное антитело, связывающееся с гликопротеином вируса эбола, фрагменты днк, кодирующие указанное антитело, и антигенсвязывающий фрагмент

Изобретение относится к области биотехнологии и биохимии, а именно к моноклональному антителу, селективно связывающему гликопротеин вируса Эбола с константой диссоциации комплекса 2,6⋅10 М, а также изолированному фрагменту ДНК, кодирующему участки легкой и тяжелой цепей указанного антитела, и...
Тип: Изобретение
Номер охранного документа: 0002630304
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0568

Способ определения бактериальной контаминации биоматериалов

Изобретение относится к области биотехнологии. Заявлен способ определения бактериальной контаминации культур клеток человека, а также лекарственных средств и биоматериалов на их основе при помощи ПЦР-амплификации последовательности ДНК гена бактериальной 16s РНК, универсальной для всех видов...
Тип: Изобретение
Номер охранного документа: 0002630673
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1a0a

Способ получения и использования тканеинженерных конструкций на основе прогениторных клеток для лечения заболеваний сердца

Изобретение относится к области клеточной и тканевой инженерии, конкретно к созданию тканеинженерных конструкций на основе прогениторных клеток миокарда и лечению заболеваний сердца. Способ включает высаживание на культуральные чашки прогениторных клеток сердца из расчета 100000-1000000 клеток...
Тип: Изобретение
Номер охранного документа: 0002636464
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1c73

Способ оценки безопасности биомедицинских клеточных продуктов

Изобретение относится к области медицины и предназначено для оценки безопасности биомедицинского клеточного продукта (БМКП). Устанавливаются контрольные количественные величины, характеризующие уровень теломеразной активности в клетках с различным туморогенным потенциалом. Сопоставляются уровни...
Тип: Изобретение
Номер охранного документа: 0002640487
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.1eff

Устройство для преобразования возобновляемой энергии

Изобретение относится к устройствам для преобразования возобновляемой энергии. Устройство для преобразования возобновляемой энергии содержит раму, установленный на раме кривошипно-шатунный механизм, вал которого шарнирно связан шатуном и соединительным звеном с рамой; лопасть, жестко...
Тип: Изобретение
Номер охранного документа: 0002641176
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f7d

Высокотемпературная сверхпроводящая пленка на кристаллической кварцевой подложке и способ ее получения

Изобретение относится к криогенной технике и может быть использовано в технологии высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения (с использованием гибких диэлектрических носителей) с применениями как в сильноточной сверхпроводниковой технике (например, сверхпроводящие...
Тип: Изобретение
Номер охранного документа: 0002641099
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22c8

Способ получения углеводородных продуктов из керогенсодержащих пород

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей до фракций до...
Тип: Изобретение
Номер охранного документа: 0002641914
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.23e6

Способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом с

Изобретение относится к области молекулярной биологии и медицинской генетики. Предложен способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом С (ХГС). Осуществляют получение образца геномной ДНК больного, выявление полиморфизмов в генах ITGB3 1565 Т/С...
Тип: Изобретение
Номер охранного документа: 0002642626
Дата охранного документа: 25.01.2018
+ добавить свой РИД