×
12.01.2017
217.015.5e54

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ БИОМАССЫ В СИНТЕЗ-ГАЗ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу переработки биомассы в газообразные продукты, в частности к переработке гидролизного лигнина или целлюлозы в синтез-газ, и может быть использовано при утилизации отходов возобновляемого сырья растительного происхождения, в том числе деревообрабатывающей промышленности. Способ переработки биомассы в синтез-газ заключается в том, что биомассу механически смешивают с катализатором, представляющим собой смешанный оксид эмпирической формулы MoVTeNbO либо каталитическую систему на основе высокодисперсного металла, выбранного из группы, включающей Pt, Pd, Ni, Fe, нанесенного на оксидный носитель, например TiO или FeO, способным нагреваться до высоких температур под воздействием СВЧ-излучения, при массовом соотношении биомасса : катализатор в диапазоне 1-10:1 с последующим нагреванием полученной реакционной смеси до температуры 300-340°C под воздействием СВЧ-излучения мощностью до 10 Вт в токе воздуха или кислорода при объемной скорости подачи, равной 500-2500 ч. В качестве биомассы используют гидролизный лигнин либо целлюлозу. Технический результат - упрощение способа за счет существенного снижения температуры и проведения процесса без использования добавок инертных СВЧ-поглощающих материалов при низкой мощности СВЧ, высокая конверсия биомассы при высоком выходе качественного синтез-газа с соотношением H/CO в диапазоне 1,35-1,57. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к способу переработки биомассы в газообразные продукты и касается, в частности, способа переработки гидролизного лигнина или целлюлозы в синтез-газ в ходе СВЧ-активированного процесса окислительной конверсии лигнина или целлюлозы и может быть использовано при утилизации отходов возобновляемого сырья растительного происхождения, в т.ч. деревообрабатывающей промышленности.

Способ заключается в окислительной газификации возобновляемого сырья с получением синтез-газа (СГ) и включает воздействие СВЧ-излучением и температурой на механическую смесь катализатора и возобновляемого сырья (на примере лигнина или целлюлозы). Синтез-газ может быть использован в синтезе высших углеводородов по реакции Фишера-Тропша. Важной проблемой на сегодняшний день является разработка технологий использования отходов деревообрабатывающей промышленности в качестве возобновляемого источника энергии [Моисеев И.И., Платэ Н.А. // Топливо будущего // Химический журнал. - 2006. - №6. - С. 45-53]. К перспективной технологии возобновляемой энергетики относится быстрый пиролиз с получением водородсодержащих газов и углеродных материалов [Чирков В.Г., Вайнштейн Э.Ф. // Влияние скорости достижения заданной температуры на химический состав продуктов реакции и энергетические характеристики процесса пиролиза органических материалов // Доклады РАСХН, 2006. №2. с. 60-63].

Известен способ переработки биомассы путем ее каталитической газификации в суперкритической воде при температуре 350-400°C и давлении 220-300 атм, который приводит к образованию газообразных продуктов (H2, CO, CO2, углеводородов C1-C4), выход и соотношение которых зависят от природы катализатора [R. Azargohar, A.K. Dalai, J.А. Kozinski // Catalytic gasification of cellulose and pinewood to H2 in supercritical water // Fuel, 2014, V. 111, P. 416-425].

Известен способ переработки биомассы в синтез-газ (Q. Guan, С. Wei, Р. Ning, S. Tiana, J. Gu // Catalytic gasification of algae Nannochloropsis sp. in sub/supercritical water // Procedia Environmental Sciences, 2013, №18, P. 844-848) путем газификации органорастворимого лигнина, протекающий под давлением 220-300 атм, обусловленным парциальным давлением воды, нагретой до 350-400°C, и катализируемый солями Ni, Ru, Pt, Rh на носителях (C, Al2O3, TiO2). Газификация лигнина протекает через разложение лигнина на низкомолекулярные соединения, активно протекающее в суперкритической воде. Выход синтез-газа повышается также в присутствии доноров водорода, например целлюлозы, ксилана или гексадекана.

Известен способ переработки биомассы в синтез-газ [М. Asadullah, Т. Miyazawa, S. Ito, K. Kunimori, K. Tomishige // Demonstration of real biomass gasification drastically promoted by effective catalyst // Applied Catalysis A: General, 2003, V. 246, P. 103-116] с использованием родиевых катализаторов на оксиде церия. Реакцию проводят в кипящем слое смеси мелкоизмельченной биомассы и катализатора. Конверсия перерабатываемого сырья при 550°C и атмосферном давлении не превышает 85%. Недостатком способа является высокая температура процесса, необходимость поддержания кипящего слоя реагентов, а также использование в катализаторах дорогостоящих металлов VIII группы (Rh).

Известен способ переработки СВЧ-активированной биомассы в синтез-газ, взятый за прототип [Q. Xie, F.C. Borges, Y. Cheng et al. // Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal // Bioresource Technol., 156 (2014) 291-296]. Газификации с использованием Fe/Al2O3, Co/Al2O3 и Ni/Al2O3 катализаторов подвергались лигнин- и целлюлозусодержащие кукурузные стебли общей химической формулы CH1.53O0.97. В качестве инертного материала, поглощающего СВЧ-энергию с мощностью 750 Вт, использовали частицы карбида кремния (SiC). В момент, когда инертный материал (800 г) был нагрет до 900°C, смесь биомассы и катализатора (15 и 5 г, соответственно) приводили в контакт с нагретыми частицами SiC. Выход газообразных продуктов на лучшем Ni/Al2O3 катализаторе при этом составил около 80%, при этом в составе образующегося синтез-газа соотношение H2/CO не превышало 1. Недостатком известного способа является проведение процесса при высокой температуре и использование высокой мощности (750 Вт), поскольку было необходимо нагревать большое количество СВЧ-поглощающего материала, по сравнению с перерабатываемой биомассой. Также недостатком способа является плохое качество синтез-газа, в котором преобладает оксид углерода (30-40% об.) и содержится метан (до 10% об.).

Задачей настоящего изобретения является упрощение процесса переработки биомассы в синтез-газ при сохранении высокой конверсии перерабатываемого сырья, а также улучшение качества получаемого синтез-газа.

Для достижения поставленной задачи предложен способ переработки биомассы в синтез-газ, заключающийся в том, что биомассу механически смешивают с катализатором, представляющим собой смешанный оксид эмпирической формулы Mo1.0V0.37Te0.2Nb0.12O3 либо каталитическую систему на основе высокодисперсного металла, выбранного из группы, включающей Pt, Pd, Ni, Fe, нанесенного на оксидный носитель, например TiO2 или Fe3O4, способным нагреваться до высоких температур под воздействием СВЧ-излучения, при массовом соотношении биомасса : катализатор в диапазоне 1-10:1, с последующим нагреванием полученной реакционной смеси до температуры 300-340°C под воздействием СВЧ-излучения мощностью до 10 Вт в токе воздуха или кислорода при объемной скорости подачи, равной 500-2500 ч-1.

В качестве биомассы используют гидролизный лигнин либо целлюлозу.

Используемые катализаторы способны сами без использования добавок инертного материала нагреваться до высоких температур под воздействием СВЧ-излучения.

Конверсия перерабатываемого сырья при 300-340°C и атмосферном давлении достигает 95% за 30 минут проведения процесса. Полученный по предлагаемому способу синтез-газ представляет собой смесь H2 и CO с высоким соотношением H2/CO (до 1,57).

Поскольку окислительные процессы конверсии твердых органических отходов деревообрабатывающей промышленности являются высокотемпературными и традиционно некаталитическими (простое сжигание, высокотемпературный пиролиз), в настоящем изобретении для повышения эффективности процессов предложен способ, основанный на СВЧ-активированной окислительной конверсии лигнина или целлюлозы, включающий механическое смешение лигнина или целлюлозы с катализаторами, обладающими свойствами полупроводников или проводников тока и способными нагреваться до высоких температур под воздействием СВЧ-излучения, которые представляют собой простые или смешанные оксиды, типа Mo-Te-Nb-V-Ox, а также комбинации активных в этих процессах высокодисперсных металлов (Pt, Pd, Ni или Fe) с оксидными носителями типа TiO2, Fe3O4.

Способ переработки лигнина или целлюлозы в синтез-газ путем СВЧ-нагрева механических смесей растительной биомассы и катализатора при низкой мощности СВЧ-излучения (до 10 Вт) и атмосферном давлении характеризуется простотой исполнения и позволяет существенно снизить температуру газификации отходов деревообрабатывающей промышленности.

В качестве сырья используют гидролизный лигнин производства Красноярского завода (60%-ная влажность, фракция 0,5-1 мм) или целлюлозу на примере технической целлюлозы, содержащей примеси лигнина и гемицеллюлозы (12,1%). Перед проведением реакций сырье высушивали в сушильном шкафу при 120°C в течение 6 часов.

Смешанный оксид Mo1.0V0.37Te0.2Nb0.12O3 готовят одним из известных способов (патент РФ №2400298), гидротермальным соосаждением оксидов металлов (в автоклаве при 175°C в течение 50 часов) из растворов солей - теллурата молибдена, сульфата ванадия и оксалата ниобия с последующей фильтрацией образующегося осадка, его промывкой дистиллированной водой и прокаливанием при 600°C в токе инертного газа (азота). Катализатор l% Pt/TiO2 готовят одним из известных способов (Тарасов А.Л., Кустов Л.М., Ткаченко О.П. // Конверсия метана в синтез-газ на массивных и мембранных катализаторах Pt/TiO2 // Известия АН. Серия химическая, 2015, №1, С. 1-5). В качестве носителя использовали TiO2 в виде порошка (Р-25, Degussa, в смешанной форме: анатаз, 75% и рутил, 25%, удельная поверхность 50 м /г). Катализатор готовили пропиткой по влагоемкости водным раствором H2PtCl6 с последующей сушкой при 90°C и прокалкой на воздухе при 500°C в течение 3 часов.

Предлагаемое изобретение иллюстрируется примерами и таблицей, не ограничивающими его объем.

Пример 1

100 мг смешанного оксидного Mo1.0V0.37Te0.2Nb0.12O3 катализатора и 200 мг высушенного гидролизного лигнина механически смешивали в шаровой мельнице и слоем (высота 1,0 см) загружали полученную реакционную смесь в проточный реактор, представляющий собой кварцевую трубку с внутренним диаметром 7 мм. Реактор помещали в резонатор СВЧ-установки и при атмосферном давлении нагревали реакционную массу до температуры 320-340°C при СВЧ-излучении с частотой 5,71 ГГц и мощностью 10 Вт в токе воздуха при объемной скорости его подачи 2500 ч-1 (в расчете на катализатор).

Температуру измеряли с помощью термопары, помещенной в кварцевом стакане (диаметром 1 мм) непосредственно в реакционный слой. Реакцию окисления лигнина проводили в течение 30 минут. Колебания температуры в реакционной массе в диапазоне 320-340°C связаны, очевидно, с выгоранием лигнина и уменьшением высоты реакционного слоя.

Пример 2. Пример выполнен по аналогии с примером 1, за исключением того, что в реактор загружали 100 мг катализатора и 100 мг технической целлюлозы, содержащей примеси лигнина и гемицеллюлозы (12,1%)

Пример 3. Пример выполнен по аналогии с примером 1, за исключением того, что в реактор загружали 100 мг катализатора 1% Pt/TiO2 и 1 г гидролизного лигнина и процесс проводили при температуре 300-320°C при СВЧ-мощности 5 Вт в токе кислорода при объемной скорости подачи 500 ч-1.

Конверсию лигнина и целлюлозы в примерах 1-3 определяли методом взвешивания по потере массы реакционной смеси после проведения реакций с учетом того, что масса катализатора не может меняться. Реакционный газ на выходе из реактора анализировали на хроматографе модели "Кристаллюкс" с использованием двух петель фиксированного объема на двух колонках: сита 5А (2 м) для количественного анализа H2, O2, N2, CH4 и CO и HayeSep-Q (3 м) (CO2, C2, C3) с использованием детектора катарометр.

В таблице представлен усредненный состав реакционного газа на выходе из реактора в ходе процесса окислительной конверсии лигнина и целлюлозы.

Из таблицы видно, что уже при достаточно низкой температуре (300-340°C) в ходе СВЧ-активированной реакции окисления биомассы наряду с полным окислением лигнина и целлюлозы с образованием CO2 на катализаторах протекает реакция парциального окисления лигнина (примеры 1 и 3) и целлюлозы (пример 2) с образованием синтез-газа, при этом конверсия биомассы высокая и превышает 85%. Поскольку реакция селективно протекает с получением газа, а образование жидких углеводородов обнаружено лишь в следовых количествах, выход синтез-газа также превышает 80%. Следует отметить, что на тех же катализаторах, в том же реакторе нами была исследована реакции окисления лигнина в условиях традиционного термического нагрева реакционной массы с помощью печи с электрообогревом. В этих случаях при температурах 300-340°C за 30 мин реакции конверсия лигнина не превышала 2-5%, а основным продуктом являлся диоксид углерода. Следует также отметить, что в предлагаемом способе соотношение H2/CO в образующемся газе составляет 1,35-1,57, т.е получаемый синтез-газ с такими характеристиками может в дальнейшем использоваться для получения оксигенатов (метанола, ДМЭ) и углеводородов по реакции Фишера-Тропша.

В ходе предлагаемого способа окислительной конверсии лигнина или целлюлозы появляется возможность получения качественного синтез-газа с высоким соотношением H2/CO (до 1,57), а не метансодержащего газа, как, например, в работе [Matsumura Y, Sasaki М, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T. // Cellulose hydrolysis in subcritical and supercritical water. Comb Sci Technol. // 2006; 178: 509-536]. Кроме этого, низкая температура начала реакции парциального окисления (300-340°C) не характерна для превращения биомассы. Так, например, никелевые катализаторы при окислительной газификации целлюлозы в синтез-газ эффективны только при температуре 700°C [М. Asadullah et al. // Demonstration of real biomass gasification drastically promoted by effective catalyst // Applied Catalysis A: General 246 (2003) 103-116]. Механизм такого эффекта СВЧ-активации окислительных процессов достаточно сложен. Можно только предположить, что при воздействии микроволнового излучения на катализаторы возможен локальный высокотемпературный разогрев каталитически активных центров смешанных металл-оксидных катализаторов.

Техническим результатом предлагаемого изобретения является упрощение способа за счет существенного снижения температуры (300-340°C) и проведения процесса без использования добавок инертных СВЧ-поглощающих материалов при низкой мощности СВЧ (до 10 Ватт). Предлагаемая совокупность существенных признаков изобретения также позволяет обеспечить высокую конверсию биомассы на примере лигнина (до 92,1%) или целлюлозы (до 95,3%), при этом с высоким выходом (выше 80%) получается качественный синтез-газ с соотношением H2/CO в диапазоне 1,35-1,57, легко используемый в дальнейшем для получения оксигенатов (метанола, ДМЭ) и углеводородов по реакции Фишера-Тропша.

Источник поступления информации: Роспатент

Showing 91-100 of 108 items.
19.04.2019
№219.017.33ed

Фотохромная регистрирующая среда для трехмерной оптической памяти

Изобретение относится к новым фотохромным регистрирующим средам для трехмерной оптической памяти с фоторефрактивным недеструктивным считыванием оптической информации для использования в многослойных оптических дисках нового поколения с информационной емкостью более 1 Тбайт, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002463330
Дата охранного документа: 10.10.2012
30.05.2019
№219.017.6b9c

Димерные четвертичные соли пиридиния, обладающие биоцидным действием

Изобретение относится к новому типу димерных четвертичных солей пиридиния общей формулы: где R является линейной или разветвленной алкильной или алкениленовой или алкиновой группой, содержащей от 8 до 18 атомов углерода; n является 0 либо 1; X является атомом галогена: хлором, бромом или...
Тип: Изобретение
Номер охранного документа: 0002689419
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6ba6

Способ получения нитроэфиров

Изобретение относится к области химии органических нитросоединений, а именно, к способу получения нитроэфиров общей формулой R(ONO), где n=1-3, R - одно-, двух- или трехвалентный углеводородный радикал С-C, либо двухвалентный радикал, содержащий в углеродной цепи один или несколько атомов...
Тип: Изобретение
Номер охранного документа: 0002689406
Дата охранного документа: 28.05.2019
06.06.2019
№219.017.746f

Мембрана для разделения метансодержащей смеси газов и способ её получения

Изобретение относится к области синтеза перфторированного полимера полиперфтор (2-метил-2-этил-1,3-диоксола) для создания газоразделительной мембраны на его основе. Мембрана для разделения метансодержащей смеси газов содержит в качестве полимера полиперфтор (2-метил-2-этил-1,3-диоксол). Способ...
Тип: Изобретение
Номер охранного документа: 0002690460
Дата охранного документа: 03.06.2019
23.08.2019
№219.017.c2bd

7-нитро-3-(нитро-nno-азокси)[1,2,4]триазоло[5,1-с][1,2,4]триазин-4-амин и способ его получения

Изобретение относится к 7-нитро-3-(нитро-NNO-азокси)[1,2,4]триазоло[5,1-с][1,2,4]триазин-4-амину формулы (I) и к способу его получения. Техническим результатом настоящего изобретения является создание соединения формулы I, которое превосходит по взрывчатым характеристикам такие штатные...
Тип: Изобретение
Номер охранного документа: 0002697843
Дата охранного документа: 21.08.2019
22.12.2019
№219.017.f0b0

Замещенные 4-нитропиразолин-5-оны, способ их получения и их применение в качестве фунгицидных средств

Изобретение относится к области органической химии. Замещенные 4-нитропиразолин-5-оны общей формулы: где R=Н, фенил; R = низший алкил, фенил; R = алкил C-С, бензил, аллил, CHCHCN либо R+R=(СН), получены способом, в котором соответствующие замещенные пиразолин-5-оны подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002709732
Дата охранного документа: 19.12.2019
27.06.2020
№220.018.2b92

Способ получения наноразмерной нитроцеллюлозы или композитов на ее основе

Изобретение относится к технологии высокоэнергетических материалов, а именно к способу получения наноразмерной нитроцеллюлозы или композитов на ее основе, заключающийся в том, что 1-3 мас.% раствор нитроцеллюлозы в ацетоне или суспензию углеродных нанотрубок в 1-3 мас.% растворе нитроцеллюлозы...
Тип: Изобретение
Номер охранного документа: 0002724764
Дата охранного документа: 25.06.2020
08.08.2020
№220.018.3dfd

Катализатор для удаления оксидов серы из дымовых газов электростанций

Изобретение относится к катализатору для удаления оксидов серы из дымовых газов электростанций, содержащему цеолит типа фожазит и катионы переходных металлов, при этом в качестве цеолита он содержит низкокремнистый фожазит (LSX), а в качестве катионов переходных металлов - бинарные...
Тип: Изобретение
Номер охранного документа: 0002729422
Дата охранного документа: 06.08.2020
08.08.2020
№220.018.3e26

Органический светоизлучающий диод

Изобретение относится к производным [1,2,5]халькогенадиазоло[3,4-с]пиридинов общей формулы (1), в которой X = S или Se. Изобретение также относится к органическому светоизлучающему диоду, содержащему несущую основу, выполненную в виде подложки с размещенным на ней прозрачным слоем анода, на...
Тип: Изобретение
Номер охранного документа: 0002729424
Дата охранного документа: 06.08.2020
06.06.2023
№223.018.787c

3-амино-4-{ [4-(нитро-nno-азокси)фуразан-3-ил]-nno-азокси} фуразан и способ его получения

Изобретение относится к новому 3-амино-4-{[4-(нитро-NNO-азокси)фуразан-3-ил]-NNO-азокси}фуразану формулы I, который может найти применение в качестве окислителя или энергоемкого наполнителя смесевых твердых ракетных топлив. Изобретение относится также к способу получения...
Тип: Изобретение
Номер охранного документа: 0002768870
Дата охранного документа: 25.03.2022
Showing 91-96 of 96 items.
07.12.2018
№218.016.a499

Установка для получения жидких углеводородов из биомассы

Изобретение относится к установке конверсии биомассы в жидкие углеводороды, используемые как компонент авиабензина. Установка для получения жидких углеводородов из биомассы включает в себя последовательно соединенные блоки: блок получения синтез-газа, блок очистки и осушки СГ(синтез-газа) и...
Тип: Изобретение
Номер охранного документа: 0002674158
Дата охранного документа: 05.12.2018
29.05.2019
№219.017.6a0e

Реагент для очистки воды и почвы от хлорорганических соединений и способ его получения

Группа изобретений относится к области химической обработки воды, а также почвы от органических соединений, содержащих галогены. Получают реагент для очистки воды и почвы от хлорорганических соединений. Силикагель пропитывают раствором, содержащим триоксалатоферрат аммония и соединение...
Тип: Изобретение
Номер охранного документа: 0002466939
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.8130

Катализатор для гидрогенизационной конверсии глицерина в простые спирты, способ его приготовления и способ гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора

Изобретение относится к технологии переработки и касается катализатора для гидрогенизационной конверсии глицерина в простые спирты, способа его приготовления и способа гидрогенизационной конверсии глицерина в простые спирты с использованием этого катализатора. Предложенный катализатор содержит...
Тип: Изобретение
Номер охранного документа: 0002691068
Дата охранного документа: 10.06.2019
08.08.2020
№220.018.3dfd

Катализатор для удаления оксидов серы из дымовых газов электростанций

Изобретение относится к катализатору для удаления оксидов серы из дымовых газов электростанций, содержащему цеолит типа фожазит и катионы переходных металлов, при этом в качестве цеолита он содержит низкокремнистый фожазит (LSX), а в качестве катионов переходных металлов - бинарные...
Тип: Изобретение
Номер охранного документа: 0002729422
Дата охранного документа: 06.08.2020
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
19.06.2023
№223.018.8211

Способ очистки воздуха от диэтиламина

Изобретение относится к области химической технологии, а именно к способу очистки воздуха от летучих органических соединений (ЛОС), в частности аминов, конкретно к способу очистки воздуха от диэтиламина. Способ очистки воздуха от диэтиламина путем его адсорбции и полного окисления включает...
Тип: Изобретение
Номер охранного документа: 0002797201
Дата охранного документа: 31.05.2023
+ добавить свой РИД