×
12.01.2017
217.015.59b6

Результат интеллектуальной деятельности: СПОСОБ РЕГУЛИРОВАНИЯ ГАЗОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002588338
Дата охранного документа
27.06.2016
Аннотация: Изобретение описывает способ регулирования газовой турбины, причем величины (M, M) измерительного сигнала измеряются в разные моменты времени, а именно, по меньшей мере, в первый момент (n1) времени и во второй момент (n2) времени, причем первый момент (n1) времени предшествует второму моменту (n2) времени и причем демпфированные величины (S, S) сигнала генерируются из измеренных величин (M, M) измерительного сигнала, подвергая измеренные величины (M, M) измерительного сигнала сглаживанию с использованием коэффициента (λ) демпфирования, причем в зависимости от разницы между величиной (M) измерительного сигнала во второй момент времени (n2) и демпфированной величиной (S) сигнала в первый момент (n1) времени для регулирования используется неодинаковый коэффициент (λ) демпфирования. Технический результат изобретения - повышение эффективности регулирования газовой турбины. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу регулирования газовой турбины, причем величина измерительного сигнала измеряется в разные моменты времени, а именно, по меньшей мере, в первый момент времени и второй момент времени, причем первый момент времени предшествует второму моменту времени, и из величин измерительного сигнала генерируются величины демпфированного сигнала, подвергая величины измерительного сигнала сглаживанию коэффициентом демпфирования.

Газовая турбина является турбомашиной, которая обычно включает в себя компрессор, турбину и узел камеры сгорания. Воздух окружающей среды, который всасывается в компрессор, в компрессоре сжимается, а затем сжатый воздух подается в узел камеры сгорания. В узле камеры сгорания находится, по меньшей мере, одна камера сгорания в большинстве случаев с несколькими горелками, к которым подается сжатый воздух. Наряду со сжатым воздухом к горелкам подается, кроме того, топливо, которое смешивается с воздухом и сжигается. Образующиеся при этом горячие рабочие газы подаются в турбину, где они расширяются и охлаждаются, вращая при этом турбину. Таким способом тепловая энергия преобразуется в механическую работу, которая, с одной стороны, используется для привода компрессора, а с другой стороны, для привода потребляющего устройства, например генератора для выработки электрического тока.

Необходимо добиться того, чтобы в процессе горения пламя в камере сгорания было ровным. Нестабильности пламени проявляются, в частности, по причине резонансных колебаний горения в рабочем газе и могут, с одной стороны, приводить к увеличенному выбросу вредных веществ, а с другой стороны, вызывать колебания и вибрации камеры сгорания, которые уменьшают срок службы камеры сгорания и сокращают периоды времени между техническими обслуживаниями.

Стабильность горения в газовых турбинах и других топочных установках оценивается, как правило, по сильно изменяющимся во времени измерительным сигналам. Это могут быть, например, измерительные сигналы, являющиеся результатом измерения амплитуды ускорения или амплитуды давления. Чтобы подавить нежелательные высокочастотные компоненты, измерительные сигналы обычно демпфируются. Однако через определенные промежутки времени то и дело появляются пики на вертикальном профиле измерения. Это можно назвать также профилем «штакетникового забора». Между пиками высота падает до совершенно не критического значения. Отдельный пик также не является еще критическим. Однако если пики повторяются, или возрастает высота пиков, или при следовании друг за другом пики становятся все более частыми, то это указывает на начинающуюся нестабильность.

До сих пор для регулирования обычно используются так называемые сигналы равновесных максимумов, называемые также сигналами «удержания пиков». При этом для заранее определенного периода времени в качестве величины сигнала передается только максимально проявляющийся уровень. Этот сигнал, однако, не несет никакой информации о частоте повторения пиков. Если промежуток времени является большим, то регулированию передается критический, высокий показатель амплитуды, если бы даже при определенных обстоятельствах был один, неопасный пик. Если промежуток времени настолько маленький, что в расчете на каждый промежуток времени можно ожидать максимум один пик на наибольших сильных и слабых сигналах, чередующихся в быстрой последовательности, что приводит к неспокойному и часто очень неэффективному регулированию.

Задача изобретения состоит в создании способа регулирования газовой турбины, который предотвращает проявление выше описанных недостатков.

В соответствии с изобретением эта задача решается посредством способа регулирования газовой турбины, в котором величины измерительного сигнала измеряются в разные моменты времени, а именно, по меньшей мере, в первый момент времени и во второй момент времени. При этом первый момент времени предшествует второму моменту времени. Величины демпфированного сигнала генерируются из величин измерительного сигнала таким образом, что измеренные величины измерительного сигнала подвергаются сглаживанию коэффициентом демпфирования. В зависимости от разницы между величиной измерительного сигнала во второй момент времени и величиной демпфированного сигнала в первый момент времени используется разный коэффициент демпфирования. При этом генерируются величины сигнала, которые учитывают как уровень амплитуд, так и частоту повторения пиков. Благодаря этому возможно эффективное регулирование. Сглаживание является экспоненциальным сглаживанием. Это позволяет особенно эффективно сглаживать величины временных рядов, которым не свойственна определенная систематизация.

Обеспечивающие преимущества развития изобретения изложены в зависимых пунктах.

Величина демпфирующего сигнала с получением преимущества определена путем суммирования двух произведений, первое из которых является результатом перемножения коэффициента демпфирования и измеренной во второй момент времени величиной измерительного сигнала, а второе произведение является результатом перемножения величины разницы между единицей и коэффициентом демпфирования с величиной демпфированного сигнала в первый момент времени. Реализовать это очень просто.

В особенно предпочтительном варианте осуществления используется более высокий коэффициент демпфирования (= слабое демпфирование), если измеренная во второй момент времени величина измерительного сигнала больше или равна величине демпфированного сигнала в первый момент времени, чем когда измеренная во второй момент времени величина измерительного сигнала меньше величины демпфированного сигнала в первый момент времени.

Подъем внезапно появляющегося пика обуславливает, следовательно, слабое демпфирование, другими словами, коэффициент демпфирования является высоким, поэтому величины демпфированного сигнала во время подъема пика возрастают быстро. При падении пика вызывается переключение на сильное демпфирование, другими словами, коэффициент демпфирования является низким. Величины демпфированного сигнала уменьшаются поэтому теперь медленно.

Другие признаки, свойства и преимущества настоящего изобретения видны из ниже следующего описания одного из вариантов осуществления со ссылками на приложенную фигуру.

Фигура показывает диаграмму, на которой измерительный сигнал, соответствующая уровню техники величина демпфированного сигнала, а также соответствующая изобретению величина демпфирующего сигнала нанесены по времени t.

Фигура показывает кривую 1 с величинами измерительного сигнала, которые нанесены по времени t. Профиль 1 измерительного сигнала имеет пики 4, которые сначала появляются примерно каждые две - три секунды. Величины измерительного сигнала больше примерно 2,0 как раз здесь оценены как критические. Если частота повторений этих пиков 4 соответственно высокая, то должно произойти корректирующее действие. Между временем t=14 и временем t=19 количество пиков возрастает. Ко времени t=19 было вызвано изменение режима работы. Кривая 1 с величинами измерительного сигнала имеет далее довольно спокойный профиль.

На кривой 2 из величин измерительного сигнала кривой 1 генерированы величины демпфированного сигнала в соответствии с уровнем техники, которые нанесены по времени t. Путем демпфирования в соответствии с уровнем техники устраняются высокочастотные компоненты. Кривая 2, однако, между пиками 4 продолжает резко падать. Для демпфированных в соответствии с уровнем техники величин сигнала на кривой 2, однако, нельзя еще привести ни одного значения, которое однозначно решает вопрос критичности и не критичности: величины от 0,95 до 1,15 появляются как в критической фазе до времени t=19, так и в не критической фазе после этого. Эффективное регулирование, следовательно, невозможно.

Кривая 3 построена с использованием соответствующего изобретению способа. В данном случае величины измерительного сигнала Mn1, Mn2 измерены в разные моменты времени n1, n2, а именно, по меньшей мере, в первый момент n1 времени и во второй момент n2 времени, причем первый момент n1 времени предшествует второму моменту n2 времени. Измеренные величины Mn1 и Mn2 измерительного сигнала подвергаются экспоненциальному сглаживанию с использованием коэффициента λ демпфирования. Это позволяет генерировать величины Sn1 и Sn2 сигнала. В данном случае более высокий коэффициент λ демпфирования применяется, если измеренная во второй момент n2 времени величина Mn2 измерительного сигнала больше или равна величине Sn1 демпфированного сигнала в первый момент n1 времени, чем если измеренная во второй момент n2 времени величина Mn2 измерительного сигнала меньше величины Sn1 демпфированного сигнала в первый момент n1 времени.

Это экспоненциальное сглаживание задается следующей формулой:

Sn2x·Mn2+(1-λx)·Sn1, где х=1 или х=2,

в которой:

х=2, если Mn2≥Sn1,

х=1, если Mn2<Sn1,

где λ21,

в которой λx, х=1 или х=2, является коэффициентом демпфирования, Mn2 - измеренной величиной измерительного сигнала в момент n2 времени, Mn1 - измеренной величиной измерительного сигнала в момент n1 времени, Sn1 - величиной демпфированного сигнала в момент n1 времени и Sn2 - величиной демпфированного сигнала в момент n2 времени.

В величинах демпфированного сигнала согласно изобретению в варианте осуществления были выбраны, например, λ2=0,3 и λ1=0,05. После пика 4 на кривой 3 демпфированная согласно изобретению величина сигнала уменьшается значительно медленнее, чем это происходит с величиной сигнала на кривой 2, которая демпфирована согласно методу уровня техники. Это приводит к тому, что в хронологически более позднем пике 4 величина демпфированного сигнала согласно изобретению достигает более высоких значений, чем величина демпфированного сигнала в соответствии с уровнем техники. Для целей регулирования это является часто желательным эффектом. Между временем t=14 и временем t=19 частота пиков 4 возрастает. Здесь можно видеть, что демпфированные в соответствии с изобретением величины сигнала в этом очень критическом промежутке времени остаются выше 1,5, в то время как величины демпфированного сигнала в соответствии с уровнем техники на кривой 2 снова упали почти до 1,0. Величины демпфированного сигнала в соответствии с изобретением, напротив, в критическое время между t=0 и t=19 никогда не падают ниже 1,3 и никогда не возрастают в последующем в некритическое время выше 1,16. Внезапно появляющийся пик 4 своей крутизной обуславливает поэтому слабое демпфирование, то есть коэффициент λ демпфирования является высоким и величины демпфированного сигнала во время роста пика поэтому быстро увеличиваются. При спаде пика 4 вызывается переключение на сильное демпфирование, то есть коэффициент λ демпфирования является низким. Величины демпфированного сигнала уменьшаются теперь поэтому медленно. Соответствующим изобретению методом может, следовательно, осуществляться эффективное регулирование газовой турбины, которое не только быстро реагирует на пик (путем переключения на слабое демпфирование), но и оценивает более критическим быстрое следование пиков друг за другом, чем одиночные пики.


СПОСОБ РЕГУЛИРОВАНИЯ ГАЗОВОЙ ТУРБИНЫ
Источник поступления информации: Роспатент

Showing 1,361-1,370 of 1,427 items.
06.12.2019
№219.017.e9f3

Статор для электрической вращающейся машины

Изобретение относится к области электротехники, в частности к статору электрической машины. Технический результат – улучшение электрических и термических свойств статора. Статор содержит статорный листовой пакет со стержнями катушки и по меньшей мере одну статорную пластину лобовой части...
Тип: Изобретение
Номер охранного документа: 0002707883
Дата охранного документа: 02.12.2019
06.12.2019
№219.017.ea12

Медная токовая шина

Изобретение относится к области электротехники, а именно к медной токовой шине, которая может быть использована в контактной системе, кабельном наконечнике и винтовом соединении, включающем в себя закладную гайку и винт. Для улучшения возможности соединения с кабельным наконечником...
Тип: Изобретение
Номер охранного документа: 0002707969
Дата охранного документа: 03.12.2019
08.12.2019
№219.017.eb0a

Крыльчатка и способ ее изготовления

Изобретение относится к слоистой системе (LSY), содержащей материал (BM) базового элемента (BE), причем указанная слоистая система (LSY) проходит в граничной зоне указанного базового элемента (BE) вплоть до наружной поверхности, и указанная слоистая система (LSY) содержит по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002708187
Дата охранного документа: 04.12.2019
08.12.2019
№219.017.eb7a

Измерение толщины слоя земляного покрытия

Изобретение относится к способу измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах. Способ измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах, в котором подлежащее...
Тип: Изобретение
Номер охранного документа: 0002708093
Дата охранного документа: 04.12.2019
13.12.2019
№219.017.ed5e

Конструкция теплозащитного экрана камеры сгорания с пакетом тарельчатых пружин

Изобретение относится к области турбостроения, а именно к конструкции теплозащитного экрана камеры сгорания. Представлена конструкция теплозащитного экрана камеры сгорания газовой турбины с несущей структурой и с по меньшей мере одним расположенным на несущей структуре элементом теплозащитного...
Тип: Изобретение
Номер охранного документа: 0002708760
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.f03b

Узел обмотки с ножкой для вертикальной заливки

Изобретение относится к электротехнике. Технический результат состоит в обеспечении приведения узла обмотки в вертикальное положение на ранней стадии изготовления. Узел обмотки с ножкой для вертикальной заливки. Для того чтобы предоставить узел (1) обмотки с несколькими расположенными в осевом...
Тип: Изобретение
Номер охранного документа: 0002709489
Дата охранного документа: 18.12.2019
24.12.2019
№219.017.f178

Турбомашина с несколькими ступенями направляющих лопаток и способ частичного демонтажа указанной турбомашины

Турбомашина с кольцеобразным держателем направляющих лопаток состоит из нижней части и соединённой с ней с возможностью разъёма верхней части, и с, по меньшей мере, тремя удерживаемыми на внутренней периферии, по меньшей мере, одного держателя направляющих лопаток ступенями направляющих...
Тип: Изобретение
Номер охранного документа: 0002709899
Дата охранного документа: 23.12.2019
25.12.2019
№219.017.f257

Способ контролирования устройства магнитного подшипника

Изобретение относится к метрологии. Способ контроля устройства магнитного подшипника содержит следующие этапы: устанавливают первую и вторую пары диаметрально противоположных датчиков. Вторая пара расположена со смещением относительно первой пары датчиков на угол α. Расстояние от датчика до...
Тип: Изобретение
Номер охранного документа: 0002710000
Дата охранного документа: 23.12.2019
21.01.2020
№220.017.f78d

Способ управления включенными параллельно обратнопроводящими полупроводниковыми переключателями

Изобретение относится к области электротехники и может быть использовано для управления по меньшей мере двумя обратнопроводящими полупроводниковыми переключателями. Тезхническим результатом является повышение пропускной мощности преобразователя тока. В способе управления включением параллельно...
Тип: Изобретение
Номер охранного документа: 0002711346
Дата охранного документа: 16.01.2020
21.01.2020
№220.017.f7bf

Компактный сухой трансформатор с электрической обмоткой и способ изготовления электрической обмотки

Изобретение относится к электротехнике. Технический результат заключается в создании покрытия с высокой термостойкостью, механической прочностью и устойчивостью к влияниям окружающей среды. Электрическая обмотка для сухого трансформатора с проводником обмотки, который навит во множество витков...
Тип: Изобретение
Номер охранного документа: 0002711349
Дата охранного документа: 16.01.2020
Showing 941-944 of 944 items.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
29.04.2019
№219.017.436f

Способ и устройство для регулирования линии режима работы камеры сгорания газовой турбины

Способ и устройство для регулирования линии режима работы газотурбинной установки с по меньшей мере одним сенсорным датчиком для определения измеряемой величины и для выдачи представляющего измеряемую величину измерительного сигнала по меньшей мере одним исполнительным органом для воздействия...
Тип: Изобретение
Номер охранного документа: 0002413083
Дата охранного документа: 27.02.2011
+ добавить свой РИД