×
20.06.2016
217.015.0428

Результат интеллектуальной деятельности: НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. 4 ил.
Основные результаты: Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоски (Фотонные структуры и их использование для измерения параметров материалов. Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Известия вузов. Электроника 2008, №5, с.25-32).

Недостатком данного фотонного кристалла является большой продольный размер, а также ограниченность области применения только малыми и средними уровнями мощности СВЧ-колебаний.

Эти недостатки частично устранены в фотонном кристалле в виде отрезка волновода, содержащего семислойную структуру, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из фторопласта толщиной 44 мм (Резонансные особенности в разрешенных и запрещенных зонах сверхвысокочастотного фотонного кристалла с нарушением периодичности. Д. А. Усанов, С. А. Никитов, А. В. Скрипаль, Д. В. Пономарев. Радиотехника и электроника 2013, т.58, №11, с.1071-1076).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 4 раза длину волны СВЧ-излучения.

Наиболее близким по габаритным размерам к предлагаемому является фотонный кристалл в виде отрезка волновода, содержащего структуру из 11 слоев, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из пенопласта толщиной 12 мм (см. патент на изобретение RU №2407114, МПК Н01Р 1/00).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 2 раза длину волны СВЧ-излучения.

Задачей настоящего изобретения является создание СВЧ фотонного кристалла с продольным размером, меньшим длины волны основного типа.

Техническим результатом является уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа.

Указанный технический результат достигается тем, что низкоразмерный волноводный фотонный кристалл выполнен в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, согласно решению четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Предлагаемое устройство поясняется чертежами: на фиг.1 представлена модель фотонного кристалла, на фиг.2 - расчетные частотные зависимости коэффициента пропускания (непрерывная кривая) и отражения (пунктирная кривая) низкоразмерного фотонного кристалла с диэлектрическими слоями из фторопласта, на фиг.3 - расчетная и экспериментальная частотные зависимости коэффициента отражения низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола, на фиг.4 - расчетная и экспериментальная частотные зависимости коэффициента пропускания низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола. Позициями на фиг.1 обозначены:1 - отрезок прямоугольного волновода, 2 - верхняя стенка волновода, 3 - диэлектрические слои, 4 - нижняя стенка волновода, 5 - тонкие металлические пластины, S - величина зазора, h - толщина слоя диэлектрика.

Сущность изобретения заключается в том, что в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Оригинальность предлагаемого решения заключается в том, что толщина всех слоев периодической структуры предлагаемого волноводного фотонного кристалла существенно меньше длины волны основного типа в волноводе, при этом в качестве четных слоев используются диэлектрические слои, полностью заполняющие поперечное сечение волновода, а в качестве нечетных элементов - тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода.

Низкоразмерный волноводный фотонный кристалл представляет собой отрезок волновода, который содержит элементы, периодически чередующиеся в направлении распространения электромагнитного излучения.

Четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода. Толщина диэлектрических слоев h определяется по формуле:

,

где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - диэлектрическая проницаемость диэлектрика, k - численный коэффициент.

Нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла.

Теоретическое обоснование достижения положительного эффекта.

Возможность значительного уменьшения размеров предложенного СВЧ фотонного кристалла по сравнению с известными волноводными СВЧ фотонными кристаллами обосновывается предложенной физической моделью, состоящей в том, что взаимодействие в предложенном устройстве осуществляется не по основному типу волны, а по высшим типам, источником которых является зазор между металлической пластиной и широкой стенкой волновода. В последующем элементе зазор между металлической пластиной и широкой стенкой волновода расположен у противоположной стенки волновода, так что напротив возбуждающихся на зазоре высших типов волн находится металлическая отражающая стенка. В результате этого создаются условия для существования резонанса на высших типах волн. Длины волн высших типов существенно меньше длины волны основного типа. Следствием этого является уменьшенный общий размер фотонного кристалла.

Справедливость предложенной модели обоснована результатами численного моделирования и проведенными измерениями. Численное моделирование осуществлялось с использованием метода конечных элементов в САПР Ansoft HFSS.

Исходя из минимального количества тонких металлических пластин равного 5, необходимых для получения в спектре волноводного ФК «разрешенной» и «запрещенной» зон, можно определить максимальную толщину hmax диэлектрических слоев волноводной фотонной структуры, продольный размер которой не превышает длину волны основного типа в волноводе λ, по формуле

hmax=λ /(m1-1),

где λ - длина волны основного типа в волноводе, m1 - количество тонких металлических пластин в структуре.

В результате численного моделирования было выявлено, что при соблюдении условий h ≤ hmax и ε ≤ 9,8, для получения в трехсантиметровом диапазоне длин волн в спектре пропускания предлагаемого волноводного фотонного кристалла «разрешенных» зон с потерями в интервале от 6% до 50% от глубины «запрещенной» зоны коэффициент k должен находиться в интервале значений от 3 до 9, а ширина зазора S - в интервале от 0,0125λ до 0,0625λ.

Пример практической реализации устройства.

Реализовывался фотонный кристалл 3-сантиметрового диапазона длин волн. Периодическая структура фотонного кристалла состояла из 9 слоев и размещалась в отрезке волновода сечением 23×10 мм. Четные слои структуры были выполнены из диэлектрика, полностью заполняющего поперечное сечение волновода. В качестве материала диэлектрика использовался пенополистирол (ε=1,02). Толщина диэлектрических слоев h составляла 3 мм. В качестве нечетных слоев фотонного кристалла использовались тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом располагались у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Металлические пластины изготовлены из алюминия. Толщина каждой пластины составляла 15 мкм. Минимальная величина толщины металлической пластины должна превышать толщину скин-слоя в выбранном диапазоне частот, а максимальная величина толщины металлической пластины должна быть меньше 0,001λ. Величина каждого из зазоров между металлическими пластинами и широкой стенкой волновода составляла 1 мм. Продольный размер созданного волноводного фотонного кристалла составил 12,25 мм.

Частотные зависимости коэффициентов отражения и пропускания полученной фотонной структуры измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей AgilentPNA-LN5230A. На фиг. 2, 3 представлены расчетные и экспериментальные частотные зависимости коэффициентов отражения и пропускания созданного фотонного кристалла. Таким образом, длина волны основного типа, распространяющейся в полученном фотонном кристалле, более чем в 2 раза превысила его продольный размер.

Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
Источник поступления информации: Роспатент

Showing 51-60 of 77 items.
10.09.2015
№216.013.7889

Способ определения скорости пульсовой волны дистанционным методом

Изобретение относится к области медицины, а именно к кардиологии. Осуществляют выбор точек, между которыми необходимо определить скорость пульсовой волны. Определяют форму движения тканей в выбранных точках путем излучения электромагнитного сигнала, приема отраженного от точки сигнала,...
Тип: Изобретение
Номер охранного документа: 0002562446
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7aaa

Способ электрической пассивации поверхности монокристаллического кремния

Изобретение относится к технологии обработки кремниевых монокристаллических пластин и может быть использовано для создания электронных структур на его основе. Способ электрической пассивации поверхности кремния тонкопленочным органическим покрытием из поликатионных молекул включает...
Тип: Изобретение
Номер охранного документа: 0002562991
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.8184

Способ содействия пассажу мочи в мочеточнике

Изобретение относится к медицине, а именно - к нефрологии. Способ включает воздействие электрическим током через электроды. Один электрод располагают в области лобковой кости, остальные - паравертебрально по внешнему краю мышцы, выпрямляющей позвоночник, в области между XII ребром и крестцовым...
Тип: Изобретение
Номер охранного документа: 0002564753
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.822c

Способ получения микротрубок из хитозана (варианты)

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микротрубок из хитозана, заключающийся в том, что готовят раствор хитозана в органической кислоте, опускают стержень в раствор хитозана в органической кислоте, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002564921
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.98e7

Способ определения содержания мекония в амниотической жидкости

Изобретение относится к медицине, в частности акушерству и перинатологии, и может быть использовано для диагностики содержания мекония в амниотической жидкости. Регистрируют интенсивность отраженной ультразвуковой волны. Выделяют изображение в области визуализации амниотической жидкости....
Тип: Изобретение
Номер охранного документа: 0002570763
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a26b

Способ и устройство формирования амплитудно-частотной характеристики с высоким коэффициентом прямоугольности трактов частотно-модулированных сигналов с импульсной модуляцией

Изобретение относится к области радиоэлектроники и может быть использовано в качестве селективного устройства. Технический результат - увеличение затухания за полосой пропускания амплитудно-частотной характеристики (АЧХ). Способ формирования АЧХ с высоким коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002573221
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.ce25

Способ получения йодпроизводных хитозана

Изобретение относится к способу получения йодпроизводных хитозана и может быть использовано в химической промышленности, медицине, фармацевтике и ветеринарии. Способ заключается в том, что производят модификацию хитозансодержащего вещества при комнатной температуре в йодсодержащих парах более 5...
Тип: Изобретение
Номер охранного документа: 0002575784
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.e8e4

Волноводная структура с разрешенными и запрещенными зонами

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые...
Тип: Изобретение
Номер охранного документа: 0002575995
Дата охранного документа: 27.02.2016
27.04.2016
№216.015.39ad

Способ флуориметрического определения флуниксина

Изобретение относится к аналитической химии, конкретно к определению флуниксина в лекарственных препаратах. При осуществлении способа в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации 1·10 М, соль тербия Tbдо концентрации 1·10 М, лекарственный препарат...
Тип: Изобретение
Номер охранного документа: 0002582960
Дата охранного документа: 27.04.2016
Showing 51-60 of 117 items.
20.08.2015
№216.013.6ed0

Способ получения терагерцовых изображений раковых опухолей и патологий кожи

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных...
Тип: Изобретение
Номер охранного документа: 0002559938
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6ed2

Способ дистанционного контроля параметров сердечной деятельности организма

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля параметров сердечной деятельности организма. Способ заключается в излучении электромагнитного СВЧ-сигнала, приеме интерференционного сигнала, являющегося суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002559940
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7889

Способ определения скорости пульсовой волны дистанционным методом

Изобретение относится к области медицины, а именно к кардиологии. Осуществляют выбор точек, между которыми необходимо определить скорость пульсовой волны. Определяют форму движения тканей в выбранных точках путем излучения электромагнитного сигнала, приема отраженного от точки сигнала,...
Тип: Изобретение
Номер охранного документа: 0002562446
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7aaa

Способ электрической пассивации поверхности монокристаллического кремния

Изобретение относится к технологии обработки кремниевых монокристаллических пластин и может быть использовано для создания электронных структур на его основе. Способ электрической пассивации поверхности кремния тонкопленочным органическим покрытием из поликатионных молекул включает...
Тип: Изобретение
Номер охранного документа: 0002562991
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.8184

Способ содействия пассажу мочи в мочеточнике

Изобретение относится к медицине, а именно - к нефрологии. Способ включает воздействие электрическим током через электроды. Один электрод располагают в области лобковой кости, остальные - паравертебрально по внешнему краю мышцы, выпрямляющей позвоночник, в области между XII ребром и крестцовым...
Тип: Изобретение
Номер охранного документа: 0002564753
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.822c

Способ получения микротрубок из хитозана (варианты)

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микротрубок из хитозана, заключающийся в том, что готовят раствор хитозана в органической кислоте, опускают стержень в раствор хитозана в органической кислоте, отличающийся тем, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002564921
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.98e7

Способ определения содержания мекония в амниотической жидкости

Изобретение относится к медицине, в частности акушерству и перинатологии, и может быть использовано для диагностики содержания мекония в амниотической жидкости. Регистрируют интенсивность отраженной ультразвуковой волны. Выделяют изображение в области визуализации амниотической жидкости....
Тип: Изобретение
Номер охранного документа: 0002570763
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a26b

Способ и устройство формирования амплитудно-частотной характеристики с высоким коэффициентом прямоугольности трактов частотно-модулированных сигналов с импульсной модуляцией

Изобретение относится к области радиоэлектроники и может быть использовано в качестве селективного устройства. Технический результат - увеличение затухания за полосой пропускания амплитудно-частотной характеристики (АЧХ). Способ формирования АЧХ с высоким коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002573221
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.ce25

Способ получения йодпроизводных хитозана

Изобретение относится к способу получения йодпроизводных хитозана и может быть использовано в химической промышленности, медицине, фармацевтике и ветеринарии. Способ заключается в том, что производят модификацию хитозансодержащего вещества при комнатной температуре в йодсодержащих парах более 5...
Тип: Изобретение
Номер охранного документа: 0002575784
Дата охранного документа: 20.02.2016
+ добавить свой РИД