×
20.06.2016
217.015.0428

Результат интеллектуальной деятельности: НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. 4 ил.
Основные результаты: Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоски (Фотонные структуры и их использование для измерения параметров материалов. Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Известия вузов. Электроника 2008, №5, с.25-32).

Недостатком данного фотонного кристалла является большой продольный размер, а также ограниченность области применения только малыми и средними уровнями мощности СВЧ-колебаний.

Эти недостатки частично устранены в фотонном кристалле в виде отрезка волновода, содержащего семислойную структуру, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из фторопласта толщиной 44 мм (Резонансные особенности в разрешенных и запрещенных зонах сверхвысокочастотного фотонного кристалла с нарушением периодичности. Д. А. Усанов, С. А. Никитов, А. В. Скрипаль, Д. В. Пономарев. Радиотехника и электроника 2013, т.58, №11, с.1071-1076).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 4 раза длину волны СВЧ-излучения.

Наиболее близким по габаритным размерам к предлагаемому является фотонный кристалл в виде отрезка волновода, содержащего структуру из 11 слоев, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из пенопласта толщиной 12 мм (см. патент на изобретение RU №2407114, МПК Н01Р 1/00).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 2 раза длину волны СВЧ-излучения.

Задачей настоящего изобретения является создание СВЧ фотонного кристалла с продольным размером, меньшим длины волны основного типа.

Техническим результатом является уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа.

Указанный технический результат достигается тем, что низкоразмерный волноводный фотонный кристалл выполнен в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, согласно решению четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Предлагаемое устройство поясняется чертежами: на фиг.1 представлена модель фотонного кристалла, на фиг.2 - расчетные частотные зависимости коэффициента пропускания (непрерывная кривая) и отражения (пунктирная кривая) низкоразмерного фотонного кристалла с диэлектрическими слоями из фторопласта, на фиг.3 - расчетная и экспериментальная частотные зависимости коэффициента отражения низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола, на фиг.4 - расчетная и экспериментальная частотные зависимости коэффициента пропускания низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола. Позициями на фиг.1 обозначены:1 - отрезок прямоугольного волновода, 2 - верхняя стенка волновода, 3 - диэлектрические слои, 4 - нижняя стенка волновода, 5 - тонкие металлические пластины, S - величина зазора, h - толщина слоя диэлектрика.

Сущность изобретения заключается в том, что в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Оригинальность предлагаемого решения заключается в том, что толщина всех слоев периодической структуры предлагаемого волноводного фотонного кристалла существенно меньше длины волны основного типа в волноводе, при этом в качестве четных слоев используются диэлектрические слои, полностью заполняющие поперечное сечение волновода, а в качестве нечетных элементов - тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода.

Низкоразмерный волноводный фотонный кристалл представляет собой отрезок волновода, который содержит элементы, периодически чередующиеся в направлении распространения электромагнитного излучения.

Четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода. Толщина диэлектрических слоев h определяется по формуле:

,

где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - диэлектрическая проницаемость диэлектрика, k - численный коэффициент.

Нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла.

Теоретическое обоснование достижения положительного эффекта.

Возможность значительного уменьшения размеров предложенного СВЧ фотонного кристалла по сравнению с известными волноводными СВЧ фотонными кристаллами обосновывается предложенной физической моделью, состоящей в том, что взаимодействие в предложенном устройстве осуществляется не по основному типу волны, а по высшим типам, источником которых является зазор между металлической пластиной и широкой стенкой волновода. В последующем элементе зазор между металлической пластиной и широкой стенкой волновода расположен у противоположной стенки волновода, так что напротив возбуждающихся на зазоре высших типов волн находится металлическая отражающая стенка. В результате этого создаются условия для существования резонанса на высших типах волн. Длины волн высших типов существенно меньше длины волны основного типа. Следствием этого является уменьшенный общий размер фотонного кристалла.

Справедливость предложенной модели обоснована результатами численного моделирования и проведенными измерениями. Численное моделирование осуществлялось с использованием метода конечных элементов в САПР Ansoft HFSS.

Исходя из минимального количества тонких металлических пластин равного 5, необходимых для получения в спектре волноводного ФК «разрешенной» и «запрещенной» зон, можно определить максимальную толщину hmax диэлектрических слоев волноводной фотонной структуры, продольный размер которой не превышает длину волны основного типа в волноводе λ, по формуле

hmax=λ /(m1-1),

где λ - длина волны основного типа в волноводе, m1 - количество тонких металлических пластин в структуре.

В результате численного моделирования было выявлено, что при соблюдении условий h ≤ hmax и ε ≤ 9,8, для получения в трехсантиметровом диапазоне длин волн в спектре пропускания предлагаемого волноводного фотонного кристалла «разрешенных» зон с потерями в интервале от 6% до 50% от глубины «запрещенной» зоны коэффициент k должен находиться в интервале значений от 3 до 9, а ширина зазора S - в интервале от 0,0125λ до 0,0625λ.

Пример практической реализации устройства.

Реализовывался фотонный кристалл 3-сантиметрового диапазона длин волн. Периодическая структура фотонного кристалла состояла из 9 слоев и размещалась в отрезке волновода сечением 23×10 мм. Четные слои структуры были выполнены из диэлектрика, полностью заполняющего поперечное сечение волновода. В качестве материала диэлектрика использовался пенополистирол (ε=1,02). Толщина диэлектрических слоев h составляла 3 мм. В качестве нечетных слоев фотонного кристалла использовались тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом располагались у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Металлические пластины изготовлены из алюминия. Толщина каждой пластины составляла 15 мкм. Минимальная величина толщины металлической пластины должна превышать толщину скин-слоя в выбранном диапазоне частот, а максимальная величина толщины металлической пластины должна быть меньше 0,001λ. Величина каждого из зазоров между металлическими пластинами и широкой стенкой волновода составляла 1 мм. Продольный размер созданного волноводного фотонного кристалла составил 12,25 мм.

Частотные зависимости коэффициентов отражения и пропускания полученной фотонной структуры измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей AgilentPNA-LN5230A. На фиг. 2, 3 представлены расчетные и экспериментальные частотные зависимости коэффициентов отражения и пропускания созданного фотонного кристалла. Таким образом, длина волны основного типа, распространяющейся в полученном фотонном кристалле, более чем в 2 раза превысила его продольный размер.

Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
Источник поступления информации: Роспатент

Showing 31-40 of 77 items.
27.09.2014
№216.012.f85c

Резонансное устройство для ближнеполевого свч-контроля параметров материалов

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного...
Тип: Изобретение
Номер охранного документа: 0002529417
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f873

Векторный магнитометр на основе дискового жиг резонатора и способ определения вектора магнитного поля

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли. Магнитометр включает в себя...
Тип: Изобретение
Номер охранного документа: 0002529440
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f87b

Трёхкомпонентный магнитометр на сферическом жиг резонаторе и способ определения полного вектора магнитного поля

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли. Магнитометр включает в себя...
Тип: Изобретение
Номер охранного документа: 0002529448
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f87f

Способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах

Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют...
Тип: Изобретение
Номер охранного документа: 0002529452
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fbb7

Активный аппаратный стек процессора

Изобретение относится к области электроники и микропроцессорной техники и может быть использовано в конструкциях современных, высокопроизводительных RISC-микропроцессоров и микроконтроллеров. Технический результат заявленного изобретения заключается в повышении быстродействия процессора, его...
Тип: Изобретение
Номер охранного документа: 0002530285
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fefa

Мембрана ионоселективного электрода для определения ионных поверхностно-активных веществ в сточных водах и синтетических моющих средствах

Изобретение относится к мембране ионоселективного электрода, состоящей из поливинилхлорида в качестве матрицы, дибутилфталата в качестве пластификатора и электродно-активного соединения, содержащего медь и додецилсульфат натрия. Мембрана характеризуется тем, что электродно-активное соединение...
Тип: Изобретение
Номер охранного документа: 0002531130
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff83

Способ формирования многоскоростных неламинарных электронных пучков

Изобретение относится к области СВЧ-электроники и предназначено для формирования многоскоростных неламинарных электронных пучков. Технический результат - увеличение разброса электронов по скоростям в области электронной пушки за счет управляемого торможения части электронного пучка, в...
Тип: Изобретение
Номер охранного документа: 0002531267
Дата охранного документа: 20.10.2014
10.12.2014
№216.013.0cef

Устройство для определения параметров металлодиэлектрических структур

Изобретение относится к измерительной технике, может быть использовано для измерения диэлектрической проницаемости и толщин нанометровых проводящих пленок, нанесенных на подложку из диэлектрического материала. Технический результат заключается в повышении чувствительности и расширении...
Тип: Изобретение
Номер охранного документа: 0002534728
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf4

Пассивная радиочастотная идентификационная метка на поверхностных акустических волнах

Изобретение относится к радиоэлектронике, в частности к пассивным устройствам радиочастотной идентификации на поверхностных акустических волнах (ПАВ). Технический результат заключается в улучшении идентификационных характеристик пассивной радиочастотной идентификационной метки на ПАВ....
Тип: Изобретение
Номер охранного документа: 0002534733
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8c

Гелеобразная композиция широкого спектра биологического действия

Изобретение относится к медицине и представляет собой гелеобразную биологически активную композицию для нанесения на кожу, содержащую гидрохлорид хитозана в количестве 10-20 % масс., органическую кислоту в количестве 1-10 % масс., дистиллированную воду - остальное. Органическая кислота...
Тип: Изобретение
Номер охранного документа: 0002535141
Дата охранного документа: 10.12.2014
Showing 31-40 of 117 items.
20.09.2014
№216.012.f672

Способ адаптивной обработки изделий на станках с чпу

Изобретение относится к механической обработке материалов и управлению точностью обработки изделий при использовании станков с ЧПУ. Сущность изобретения заключается в том, что в способе адаптивной обработки изделий на станках с ЧПУ обеспечивается автоматизированная компьютерная поддержка...
Тип: Изобретение
Номер охранного документа: 0002528923
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f793

Способ изготовления тонкопленочного органического покрытия

Изобретение относится к технологии наноматериалов и наноструктур и может применяться для получения тонкопленочных полимерных материалов и покрытий, используемых как в сенсорных, аналитических, диагностических и других устройствах, так и при создании защитных диэлектрических покрытий. Cпособ...
Тип: Изобретение
Номер охранного документа: 0002529216
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f85c

Резонансное устройство для ближнеполевого свч-контроля параметров материалов

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного...
Тип: Изобретение
Номер охранного документа: 0002529417
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f873

Векторный магнитометр на основе дискового жиг резонатора и способ определения вектора магнитного поля

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли. Магнитометр включает в себя...
Тип: Изобретение
Номер охранного документа: 0002529440
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f87b

Трёхкомпонентный магнитометр на сферическом жиг резонаторе и способ определения полного вектора магнитного поля

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли. Магнитометр включает в себя...
Тип: Изобретение
Номер охранного документа: 0002529448
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f87f

Способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах

Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют...
Тип: Изобретение
Номер охранного документа: 0002529452
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fbb7

Активный аппаратный стек процессора

Изобретение относится к области электроники и микропроцессорной техники и может быть использовано в конструкциях современных, высокопроизводительных RISC-микропроцессоров и микроконтроллеров. Технический результат заявленного изобретения заключается в повышении быстродействия процессора, его...
Тип: Изобретение
Номер охранного документа: 0002530285
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fefa

Мембрана ионоселективного электрода для определения ионных поверхностно-активных веществ в сточных водах и синтетических моющих средствах

Изобретение относится к мембране ионоселективного электрода, состоящей из поливинилхлорида в качестве матрицы, дибутилфталата в качестве пластификатора и электродно-активного соединения, содержащего медь и додецилсульфат натрия. Мембрана характеризуется тем, что электродно-активное соединение...
Тип: Изобретение
Номер охранного документа: 0002531130
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff83

Способ формирования многоскоростных неламинарных электронных пучков

Изобретение относится к области СВЧ-электроники и предназначено для формирования многоскоростных неламинарных электронных пучков. Технический результат - увеличение разброса электронов по скоростям в области электронной пушки за счет управляемого торможения части электронного пучка, в...
Тип: Изобретение
Номер охранного документа: 0002531267
Дата охранного документа: 20.10.2014
10.12.2014
№216.013.0cef

Устройство для определения параметров металлодиэлектрических структур

Изобретение относится к измерительной технике, может быть использовано для измерения диэлектрической проницаемости и толщин нанометровых проводящих пленок, нанесенных на подложку из диэлектрического материала. Технический результат заключается в повышении чувствительности и расширении...
Тип: Изобретение
Номер охранного документа: 0002534728
Дата охранного документа: 10.12.2014
+ добавить свой РИД