×
20.05.2016
216.015.3ec1

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения в заявленном устройстве и способе, реализующем указанное устройство. Сущность изобретения заключается в том, что проводят калибровку, при которой перемещают лазерный излучатель, жестко соединенный с подвижным элементом магнитострикционного преобразователя линейных перемещений. При этом лазерный излучатель проецирует метку на эталонную шкалу, расположенную параллельно магнитострикционному преобразователю линейного перемещения. Положение метки на эталонной шкале регистрируют цифровым микроскопом. После этого рассчитывают расстояние от начала координат эталонной шкалы до центра лазерной метки. Для этого цифровым микроскопом делают не менее 5 снимков (всей шкалы измерения, всей шкалы измерения с меткой в первом положении, участка в районе метки в первом положении, всей шкалы измерения в районе метки во втором положении и участка в районе метки во втором положении). Полученные снимки загружают в персональный компьютер. Далее на эти снимки накладывают цифровые шкалы, после чего производят расчет параметров линейных перемещений. Технический результат - повышение точности измерения линейного перемещения за счет коррекции составляющей погрешности, вызванной аппаратной задержкой. 2 н.п. ф-лы, 10 ил.

Изобретение относится к измерительной технике и может быть применено в системах измерения линейного перемещения.

Известен способ измерения линейного перемещения (патент RU №2125235, МКИ G01B 17/00, 1999 г.), заключающийся в том, что при измерении линейных перемещений измеряют время распространения ультразвуковой волны от неподвижного элемента возбуждения ультразвуковой волны до подвижного элемента приема ультразвуковой волны, соединенного с контролируемым объектом, и по значению этого времени судят о величине линейного перемещения объекта, перед измерением времени распространения ультразвуковой волны устанавливают подвижный элемент приема на самое близкое расстояние к неподвижному элементу возбуждения и измеряют длительность образцового импульса ультразвуковой волны, а после перемещения подвижного элемента приема вместе с контролируемым объектом на измеряемое расстояние перед каждым измерением времени распространения ультразвуковой волны измеряют длительность рабочего импульса ультразвуковой волны, вычитают ее из длительности образцового импульса и по значению полученной разности определяют величину тока подвижного элемента возбуждения. Кроме того, перед каждым циклом измерения в приемной части устанавливают пороговое напряжение, в k раз большее напряжения шума, где k - коэффициент, определяемый требованиями к помехоустойчивости, а время распространения ультразвуковой волны от зоны возбуждения до зоны приема tx, пропорциональное измеряемому перемещению, определяют из выражения

где t′i и t″i - моменты срабатывания порогового устройства приемной части при приеме импульсов ультразвуковой волны соответственно передним и задним фронтам этих импульсов;

n - число импульсов ультразвуковой волны, определяемое требованиями к точности и быстродействию.

Недостатком данного способа является невысокая точность из-за наличия в результате преобразования погрешности, обусловленной временной аппаратной задержкой, вызванной, например, изменением от температуры параметров элемента приема ультразвуковой волны. Например, если элементом приема ультразвуковой волны является индуктивная катушка, то изменяются индуктивность и сопротивление.

Также известен способ, реализуемый в устройстве магнитострикционного преобразователя линейных перемещений (авт.св. СССР №634494, МКИ4 H04R 17/00, 1978 г.), в котором информацией о перемещении служит отношение частоты циркуляции упругих колебаний в опорном канале к частоте циркуляции упругих колебаний в рабочем канале, и, таким образом, выходная величина не зависит от скорости распространения упругих колебаний в звукопроводе.

Недостатком данного способа является технически сложное выставление контрольного расстояния а, а также необходимость подведения электропитания к подвижному элементу.

Также наиболее близким по технической сущности и достигаемому результату к заявленному является способ измерения линейного перемещения (РФ №2391626, G01B 17/00, 2010 г.)

При достижении выходным электроакустическим преобразователем (ЭАП) первого известного расстояния с контроллера во входной ЭАП поступает импульс напряжения, что вызывает появление ультразвуковой волны. Через интервал времени t1 ультразвуковая волна достигает выходного ЭАП 4. Интервал времени t1 определяют измерителем временных интервалов, реализованным на основе контроллера, преобразуют в код, который заносится в память контроллера.

Затем аналогичным образом выходной ЭАП перемещают на второе известное расстояние l2. Интервал времени t2, за который ультразвуковая волна достигает выходного ЭАП, также преобразуют в код, который заносится в память контроллера.

Затем, контроллер составляет систему из двух уравнений

где l1 и l2 - расстояния, на которые выходной ЭАП перемещают в режиме калибровки,

V - скорость ультразвуковой волны,

t4 - аппаратная временная задержка, обусловленная, например, изменением индуктивности и сопротивления.

Вычислительные операции по формулам (2) осуществляют с помощью контроллера.

В режиме измерения выходной ЭАП вместе с объектом контроля перемещается на измеряемое расстояние. Во входной ЭАП с контроллера поступает импульс напряжения, приводящий к появлению ультразвуковой волны. Через интервал времени t3 ультразвуковая волна, пройдя измеряемое расстояние, достигает выходного ЭАП. Этот интервал времени преобразуется в код. Контроллер, основываясь на занесенных ранее в память кодах, пропорциональных скорости распространения ультразвуковой волны V и аппаратной задержки t4, производит расчет измеряемого расстояния по формуле (4).

Недостатком способа является невысокая точность измерения, ограниченная разрешающей способностью датчиков малых перемещений, и трудоемкость выставления контрольных расстояний.

Известно также устройство магнитострикционного преобразователя линейных перемещений (авт.св. СССР №1742618, МКИ5 G01B 17/00, 1992 г.), содержащее линейный магнитострикционный волновод, первый и второй акустический демпферы, генератор тока возбуждения, входной электроакустический преобразователь, выходной электроакустический преобразователь и одновибратор.

Недостатком аналога является невысокая точность из-за наличия составляющей погрешности, вызываемой временной аппаратной задержкой в приемном устройстве.

Также наиболее близким по технической сущности и достигаемому результату к заявленному является устройство измерения линейного перемещения (РФ №2391626, G01B 17/00, 2010 г.), содержащее линейный магнитострикционный волновод, первый и второй акустические демпферы, входной электроакустический преобразователь, выходной электроакустический преобразователь, отличающееся тем, что введены упругий элемент, который может быть реализован, например, на основе пружины, подвижный конец которого соединен с выходным электроакустическим преобразователем и имеет механический контакт с объектом контроля, соединенный с концами двух коаксиальных трубок различного диаметра, причем внутренний диаметр наружной трубки больше внешнего диаметра внутренней трубки, с обеспечением гарантированного воздушного зазора, при этом один конец внутренней трубки соединен с одним концом упругого элемента, а другой конец трубки неподвижно закреплен относительно звукопровода, а второй конец упругого элемента соединен с концом наружной трубки, обращенным к объекту контроля и контактирующего с ним, при этом коаксиальные трубки расположены параллельно звукопроводу, и перед началом режима калибровки или измерения упругий элемент расположен так, что его подвижный конец контактирует с объектом контроля, на подвижном конце упругого элемента расположен Г-образный выступ, который позволяет датчикам малых линейных перемещений регистрировать достижение подвижным концом упругого элемента и приемным электроакустическим преобразователем первого и второго известного расстояний, и выходной электроакустический преобразователь, два датчика малых линейных перемещений, закрепленных на первом и втором известных расстояниях, электродвигатель, перемещающий подвижный конец упругого элемента, контроллер, связанный с электродвигателем, входным электроакустическим преобразователем, выходным электроакустическим преобразователем, с датчиками малых линейных перемещений.

Недостатком устройства является трудоемкость выставления контрольных расстояний, сложность конструкции, требуется непосредственно жесткий контакт объекта измерения и устройства измерения линейного перемещения, точность измерения ограничена чувствительностью датчиков малых перемещений.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности калибровки магнитострикционного преобразователя линейных перемещений и упрощения устройства калибровки.

Технический результат - повышение точности измерения перемещений за счет использования цифрового микроскопа при регистрации перемещения.

Поставленная задача решается, а технический результат достигается тем, что в способе калибровки магнитострикционного преобразователя линейных перемещений рассчитывают расстояние от начала координат эталонной шкалы до центра лазерной метки, для этого делают не менее пяти снимков: всей шкалы измерения, всей шкалы измерения с меткой в первом положении, участка в районе метки в первом положении, всей шкалы измерения в районе метки во втором положении и участка в районе метки во втором положении, и полученные снимки загружают в персональный компьютер и обрабатывают с помощью системы обработки видеоизображения, затем на первом снимке устанавливают границы эталонной шкалы и присваивают значения длины эталонной шкалы, что устанавливает масштабный коэффициент (КM):

где ХРеал - значение длины эталонной шкалы,

- расчетная длина изображения (количество пикселей),

NB - количество пикселей по вертикали изображения,

NГ - количество пикселей по горизонтали изображения,

на первый и второй снимки накладывают основную шкалу с шагом а, таким образом, чтобы деления шкалы совпадали с делениями шкалы на снимке:

где L - длина всей шкалы,

n - количество делений на основной шкале,

после чего производят определение метки на основной шкале, если метка находится на границе деления шкалы, то считают, что она не охватывает следующее деление шкалы, и определяют расстояние, соответствующее сумме целых шагов а на основной шкале по формуле:

где nх - это количество делений шкалы на участке, на который не попадает метка и длина участка, на который необходимо нанести дополнительную шкалу:

где nу=у+2 - количество делений дополнительной шкалы, которые пересекает метка с учетом двух крайних делений, которые метка не пересекает,

у - количество делений основной шкалы, которые пересекает метка, на снимке участка в первом положении дополнительно накладывает шкала с меньшим шагом деления b:

где m - это количество делений дополнительной шкалы внутри диапазона а, при этом значение m выбирается таким образом, чтобы центр метки попадал на деление дополнительной шкалы b, далее производят определение положения лазерной метки на дополнительной шкале путем вычисления координаты центра яркости метки:

где

где M - суммарная яркость пятна,

Мх - суммарная яркость по оси х,

Мy - суммарная яркость по оси у,

ω(х, у) - матричная функция значения яркости в точке,

М(х; у) - значение яркости метки в отдельном пикселе,

С(хс; ус) - центр яркости метки,

после этого определяется расстояние, соответствующее сумме целых делений b на дополнительной шкале:

где mх - это количество делений шкалы на отрезке lу,

аналогичные действия выполняют для снимка во втором положении, координата положения метки в первом положении вычисляется как:

далее последовательность операций повторяют для определения координаты метки во втором положении:

далее вычисляют перемещение метки из первого положения во второе положение:

Поставленная задача также решается тем, что в устройстве калибровки магнитострикционных преобразователей перемещений, содержащем эталонную шкалу, расположенную параллельно магнитострикционному преобразователю линейного перемещения, цифровой микроскоп, персональный компьютер, лазерный излучатель, жестко соединенный с подвижной частью магнитострикционного преобразователя линейных перемещений.

Сущность изобретения поясняется чертежами. На фиг. 1 представлена структурная схема способа калибровки магнитострикционного преобразователя перемещений. На фиг. 2 изображена схема устройства. На фиг. 3 представлена эталонная шкала. На фиг. 4 представлена эталонная шкала с лазерной меткой в первом положении. На фиг. 5 представлен участок в районе лазерной метки в первом положении. На фиг. 6 представлен участок в районе лазерной метки во втором положении. На фиг. 7 представлена эталонная шкала с лазерной меткой во втором положении. На фиг. 8 представлена эталонная шкала с нанесенным на нее цифровой шкалой с шагом а. На фиг. 9 представлен участок в районе лазерной метки с дополнительной нанесенной цифровой шкалой b. На фиг. 10 представлен снимок лазерной метки, сделанный цифровым микроскопом.

Структурная часть содержит: магнитострикционный преобразователь 1 (фиг. 1), лазерный излучатель 2, эталонную шкалу 3, цифровой микроскоп 4, карту памяти 5, персональный компьютер 6.

Устройство для реализации способа содержит: магнитострикционный преобразователь линейных перемещений 1 (фиг. 2), лазерный луч 7, постоянный магнит, лазерный излучатель 2, траектория перемещения постоянного магнита с жестко закрепленным на нем лазерным излучателем 8, жестко прикрепленный к объекту измерения 9, эталонную шкалу 3, лазерные метки на эталонной шкале в первом и втором положениях 10 и 11 соответственно и цифровой микроскоп (схематично не представлен).

Источником информации являются снимки эталонной шкалы и расположенной на ней лазерной метки (фиг. 3, 4, 5, 6, 7, 8, 9, 10).

Данная система калибровки работает следующим образом. На подвижный элемент магнитострикционного преобразователя линейных перемещений 1 устанавливают указатель, например лазерный излучатель 2. Указатель крепят на подвижный элемент магнитострикционного преобразователя линейных перемещений 1, а напротив указателя устанавливают эталонную шкалу 3. Для регистрации перемещений используют цифровой микроскоп 4. Снимки перемещения передают на персональный компьютер 6, на котором установлена система определения линейного перемещения. В системе снимки подвергают обработке.

Пример конкретной реализации способа.

Обработка осуществляют по следующей последовательности операций:

1. Делают 5 снимков: всей шкалы измерения (фиг. 3), всей шкалы измерения с меткой в положении 1 (фиг. 4), участка в районе метки в положении 1 (фиг. 5), всей шкалы измерения в районе метки в положении 2 (фиг. 7), участка в районе метки в положении 2 (фиг. 6).

2. Полученные снимки загружают в ПК и обрабатывают с помощью системы обработки видеоизображения.

3. На первом снимке (фиг. 3) устанавливают границы эталонной шкалы и присваивают значения длины эталонной шкалы, что позволит установить масштабный коэффициент (КM):

где ХРеал - значение длины эталонной шкалы,

- расчетная длина изображения (количество пикселей),

NB - количество пикселей по вертикали изображения,

NГ - количество пикселей по горизонтали изображения.

4. На первый и второй снимок (фиг. 3 и 7 соответственно) накладывают основную шкалу с шагом а, таким образом, чтобы заданная шкала совпадала со шкалой на снимке:

где L - длина всей шкалы,

n - количество делений на основной шкале (фиг. 8).

5. Производят определение метки на основной шкале (если метка находится на границе деления шкалы, то считают, что она не охватывает следующее деление шкалы).

6. Определяют расстояние, соответствующее сумме целых шагов а на основной шкале:

где nх - это количество делений шкалы на участке, на который не попадает метка (фиг. 4),

и участок, на который необходимо нанести дополнительную шкалу:

где nу=у+2 - количество делений дополнительной шкалы, которые пересекает метка с учетом двух крайних делений, которые метка не пересекает,

у - количество делений основной шкалы, которые пересекает метка.

7. На снимке участка в первом положении дополнительно накладывают шкалу с меньшим шагом деления b (фиг. 9):

где m - это количество делений дополнительной шкалы внутри диапазона а. Значение m выбирают таким образом, чтобы центр метки попадал на деление дополнительной шкалы b (фиг. 9).

8. Производят определение положения лазерной метки на дополнительной шкале. Для этого вычисляют координаты центра яркости метки. Границей участка являются ближайшие деления шкалы слева и справа от метки (АС и BD, соответственно) по оси X, а ось Y находится равноудалено от делений (АВ и CD) (фиг. 10). Производят построение матрицы яркости метки (с 256 градациями яркости), в соответствии с рисунком, по которой определяют центр яркости метки.

Координаты центра яркости метки определяют по формулам -

где

где M - суммарная яркость пятна,

Mx - суммарная яркость по оси х,

My - суммарная яркость по оси y,

ω(х, у) - матричная функция значения яркости в точке

М(х; у) - значение яркости метки в отдельном пикселе,

С(хс; ус) - центр яркости метки.

9. Определяют расстояние, соответствующее сумме целых делений b на дополнительной шкале:

где mх - это количество делений шкалы на отрезке ly. Это позволит точнее определить координаты в первом положении. Аналогичные действия выполняют для снимка во втором положении (фиг. 7).

10. Определяют координату положения метки в положении 1:

11. По аналогичной последовательности операций (п. 6-10) определяют координату метки в положении 2.

12. Высчитывают перемещение метки из положения 1 в положение 2:

В программу калибровки магнитострикционного преобразователя перемещений (МПП) вводят показания объекта калибровки, и программа вычисляет величину отклонения показаний (%).

Необходимо произвести минимум 2 измерения, так как есть вероятность несовпадения начала отсчета шкалы объекта калибровки с началом отсчета эталонной шкалы.

Следует отметить, что точность измерения калибровочной системы зависит от разрешающей способности микроскопа.

Расчет требуемых параметров системы калибровки осуществляют по следующим формулам:

где Rpaзp - разрешающая способность системы калибровки МПП;

КT - количество точек измерения,

Rшк - разрешение матрицы цифрового микроскопа в линейной плоскости,

Rx - количество пикселей по оси х,

Ry - количество пикселей по оси у,

- количество пикселей по диагонали матрицы цифрового микроскопа (для увеличения диапазона измерения без изменения положения цифрового микроскопа),

Lизм - фактическая длина объекта, захваченного объективом цифрового микроскопа.

Разрешение цифрового микроскопа: Rразр.циф=Rх×Rу,

где Rx - количество пикселей по оси х;

Ry - количество пикселей по оси у;

- количество пикселей по диагонали матрицы цифрового микроскопа (для увеличения диапазона измерения без изменения положения цифрового микроскопа).

Из формулы (5) следует:

Итак, заявляемое изобретение позволяет повысить точность калибровки магнитострикционных преобразователей линейных перемещений и упросить конструкцию калибровочного устройства.


СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ КАЛИБРОВКИ МАГНИТОСТРИКЦИОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 51-60 of 109 items.
20.05.2015
№216.013.4c4b

Способ термообработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано для термической обработки сварных соединений, полученных линейной сваркой трением, в частности, соединения диска и лопаток блисков. Нагревают сварное соединение пропусканием через сварное соединение электрического тока до 10 кА при закреплении токоподводов с...
Тип: Изобретение
Номер охранного документа: 0002551045
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d6b

Способ изготовления лопаток газотурбинного двигателя

Изобретение относится к машиностроению и может быть использовано при изготовлении лопаток из алюминиевых сплавов для монодисков компрессоров газотурбинных двигателей. Изготавливают заготовку лопатки, имеющую перо предварительной формы и хвостовик. Для этого цилиндрическую заготовку подвергают...
Тип: Изобретение
Номер охранного документа: 0002551333
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.534d

Ротор высокоскоростного генератора

Изобретение относится к энергомашиностроению и может быть использовано в высокоскоростных электрических генераторах. Техническим результатом является повышение надежности и долговечности ротора высокоскоростного генератора, а также повышение его энергетических характеристик. Ротор...
Тип: Изобретение
Номер охранного документа: 0002552846
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53b8

Способ лихеноиндикации степени загрязненности атмосферного воздуха

Изобретение относится к области оценки степени загрязненности атмосферного воздуха и может быть использовано при мониторинге атмосферного воздуха фоновой и урбанизированной территории. Способ предусматривает выделение территории пробной площадки размером 25×25 м, определение внешних признаков...
Тип: Изобретение
Номер охранного документа: 0002552953
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56be

Матрица для высадки деталей сложного профиля

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении деталей сложного профиля. Матрица для высадки содержит вставку и бандажное кольцо. Вставка запрессована в бандажное кольцо с переменным по высоте бандажного кольца или вставки натягом....
Тип: Изобретение
Номер охранного документа: 0002553736
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56c2

Способ повышения показателя чувствительности магниторезистивных датчиков

Изобретение относится к измерительной технике, представляет собой способ повышения показателя чувствительности магниторезистивных датчиков и предназначено для использования в магнитометрических информационно-измерительных системах. При реализации способа измерительный мост запитывают повышенным...
Тип: Изобретение
Номер охранного документа: 0002553740
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5909

Способ определения коэффициента извилистости русла реки

Изобретение относится к области гидрологии и может быть использовано при мониторинге, моделировании, количественной оценке водных ресурсов. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ. Вычисляют количество квадратов , покрывающих реку и каждый...
Тип: Изобретение
Номер охранного документа: 0002554334
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bdc

Способ контроля местоположения и состояния контейнера с грузом

Изобретение относится к области мониторинга местоположения груза и может быть использовано для определения местоположения груза, транспортируемого железнодорожным транспортом. Способ включает в себя этапы: вычисление текущих координат, формирование и передачу в информационно-аналитический...
Тип: Изобретение
Номер охранного документа: 0002555057
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5c07

Роторная система магнитоэлектрической машины

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в...
Тип: Изобретение
Номер охранного документа: 0002555100
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6086

Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета

Изобретение относится к области гальванотехники и может быть использовано для удаления полимерных покрытий с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, а также при восстановлении особо ответственных деталей летательных...
Тип: Изобретение
Номер охранного документа: 0002556251
Дата охранного документа: 10.07.2015
Showing 51-60 of 121 items.
10.02.2015
№216.013.2252

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения U, при этом определяют длительность τ спада напряжения до...
Тип: Изобретение
Номер охранного документа: 0002540239
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.241b

Высокоскоростная электрическая машина с вертикальным валом

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Технический результат: повышение надежности, энергоэффективности, силовых характеристик и жесткости гибридного магнитного подшипника, минимизация...
Тип: Изобретение
Номер охранного документа: 0002540696
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2579

Плазменная полупроводниковая свеча зажигания

Плазменная полупроводниковая свеча зажигания содержит корпус с кольцевым боковым электродом, центральный электрод, концентрично закрепленный в корпусе через изолятор, и полупроводниковый элемент в виде кольца, соединенного с электродами. В свече выполнена полость, образованная рабочими...
Тип: Изобретение
Номер охранного документа: 0002541046
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2641

Способ получения толстослойных износостойких покрытий методом микродугового оксидирования

Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов...
Тип: Изобретение
Номер охранного документа: 0002541246
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.27a7

Мобильный взлетно-посадочный комплекс

Изобретение относится к области авиационной техники, в частности к устройству взлетно-посадочных полос аэродрома. Мобильный взлетно-посадочный комплекс содержит n-грузовых автомобилей с гидравлическими упорами, выполненными в виде домкратов с цилиндрическими наконечниками. На каждом автомобиле...
Тип: Изобретение
Номер охранного документа: 0002541608
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b83

Способ диагностирования электрической машины

Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов. Согласно предложенному...
Тип: Изобретение
Номер охранного документа: 0002542596
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c04

Волновая электростанция (варианты)

Изобретение относится к области электроэнергетики, в частности к установкам для преобразования энергии морских волн в электрическую энергию. Волновая электростанция содержит плавучий корпус, выполненный в виде цилиндра, в нижней части которого расположена рабочая камера с впускным и выпускными...
Тип: Изобретение
Номер охранного документа: 0002542736
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.33fc

Управляемое прецизионное регенеративное пороговое устройство

Изобретение относится к импульсной электронике и может использоваться в прецизионных время-импульсных преобразователях и генераторах сигналов двухтактного интегрирования. Технический результат заключается в увеличении крутизны фронтов выходных импульсов и повышении температурной стабильности...
Тип: Изобретение
Номер охранного документа: 0002544783
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3b8d

Аэродинамическое транспортное средство (варианты)

Изобретение относится к транспортным средствам. Аэродинамическое транспортное средство по первому варианту содержит компрессор, соединенный с магистралью, грузовую или пассажирскую платформу, электродвигатели, с возможностью управления углом поворота заслонками сопл и регулирования угла и силы...
Тип: Изобретение
Номер охранного документа: 0002546733
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b95

Энергодвигательная установка для дирижабля

Изобретение относится к транспортным средствам для воздухоплавания. Энергодвигательная установка для дирижабля содержит корпус дирижабля, пропеллеры, соединенные с электродвигателями, энерговырабатывающую установку, электрически связанную с электродвигателями. Силовая установка выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002546741
Дата охранного документа: 10.04.2015
+ добавить свой РИД