×
10.05.2016
216.015.3b63

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРЕННИХ ПАРАМЕТРОВ И ВЫХОДНЫХ ХАРАКТЕРИСТИК ЦИЛИНДРИЧЕСКОГО ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения внутренних параметров и выходных характеристик цилиндрического ТЭП с монокристаллическим полигранным эмиттером включает измерение вольт-амперных характеристик экспериментального ТЭП с изотермичными и эквипотенциальными электродами и математическое моделирование на основе полученных ВАХ процессов теплоэлектропроводности в ТЭП. Согласно изобретению определяют преимущественную ориентацию кристаллографических граней и площадь поверхности, занятую каждой из этих граней по окружности эмиттера. Измеряют ВАХ по меньшей мере двух экспериментальных плоских ТЭП с монокристаллическими моногранными эмиттерами, ориентация кристаллографических граней на поверхности каждого из которых соответствует одной из выявленных преимущественных ориентаций граней полигранного эмиттера. Получают зависимость плотности тока в межэлектродном зазоре цилиндрического ТЭП от азимутального направления из установленного соотношения. Полученную зависимость плотности тока от азимутального направления используют при математическом моделировании процессов в ТЭП. Технический результат - возможность получить азимутальные распределения температур и электрических потенциалов электродов, повышение точности определения выходных характеристик цилиндрических ТЭП с монокристаллическим эмиттером. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ).

При проектировании ТЭП его выходные характеристики (напряжение, электрическая мощность), а также неизмеряемые внутренние параметры (распределения температур и электрического потенциала по поверхности электродов) определяют путем математического моделирования процессов теплоэлектропроводности в межэлектродном зазоре (МЭЗ) и электродах. При этом зависимость плотности тока в МЭЗ от температуры электродов и разности их электрических потенциалов (локальную вольт-амперную характеристику) определяют из вольт-амперных характеристик (ВАХ), полученных при испытаниях экспериментальных ТЭП с изотермичными эквипотенциальными электродами.

Известен способ определения выходных характеристик и внутренних параметров ТЭП на основе локальных ВАХ, полученных на экспериментальном ТЭП плоской геометрии с поликристаллическим или монокристаллическим моногранным эмиттером [Б.А. Ушаков, В.Д. Никитин, И.Я. Емельянов. Основы термоэмиссионного преобразования энергии. Атомиздат,1974, с. 113-123].

Этот способ не может быть использован для математического моделирования цилиндрических ТЭП с монокристаллическим эмиттером, на поверхность которого выходят различные кристаллографические грани (полигранный монокристаллический эмиттер), так как структура такой эмиссионной поверхности при этом не воспроизводится. Однако ТЭП именно с такими эмиттерами разрабатываются в настоящее время для перспективных ЯЭУ [Гонтарь А.С., Николаев Ю.В., Ястребков А.А. и др. Конструкционные и топливные материалы твэлов термоэмиссионных ЯЭУ. Атомная энергия, 2005. Т. 99, вып. 5, с. 365-371].

Наиболее близким к предлагаемому техническому решению является выбранный авторами за прототип способ определения внутренних параметров и выходных характеристик цилиндрического ТЭП с монокристаллическим полигранным эмиттером, включающий измерение ВАХ экспериментального ТЭП с изотермичными эквипотенциальными электродами и математическое моделирование на основе полученных ВАХ процессов теплоэлектропроводности в ТЭП [В.В.Синявский. Методы и средства экспериментальных исследований и реакторных испытаний термоэмиссионных электрогенерирующих сборок. Атомиздат. 2000. с. 50-54].

Основные недостатки такого способа заключаются в том, что локальные ВАХ, полученные таким образом, являются усредненными по всем кристаллографическим граням, выходящим на поверхность цилиндрического эмиттера, и математическое моделирование ТЭП на основе таких ВАХ не позволяет выявить неравномерность азимутальных распределений температур и электрических потенциалов электродов.

Настоящее изобретение направлено на получение азимутальных распределений температур и электрических потенциалов электродов при одновременном повышении точности определения выходных характеристик цилиндрических ТЭП с монокристаллическим эмиттером.

Поставленная задача и технический результат достигаются тем, что в способе определения внутренних параметров и выходных характеристик цилиндрического ТЭП с монокристаллическим полигранным эмиттером, включающем измерение вольт-амперных характеристик экспериментального ТЭП с изотермичными и эквипотенциальными электродами и математическое моделирование на основе полученных ВАХ процессов теплоэлектропроводности в ТЭП, согласно данному изобретению определяют преимущественную ориентацию кристаллографических граней и площадь поверхности, занятую каждой из этих граней по окружности эмиттера, измеряют ВАХ по меньшей мере двух экспериментальных плоских ТЭП с монокристаллическими моногранными эмиттерами, ориентация кристаллографических граней на поверхности каждого из которых соответствует одной из выявленных преимущественных ориентаций граней полигранного эмиттера, получают зависимость плотности тока в межэлектродном зазоре цилиндрического ТЭП от азимутального направления из соотношения

где θ - азимутальная координата;

К - количество экспериментальных ТЭП;

sk(θ) - доля площади поверхности полигранного эмиттера, имеющая заданную ориентацию кристаллографических граней;

jk(TE,TC,V) - зависимость вольт-амперной характеристики экспериментального ТЭП от температуры электродов;

ТЕ - температура эмиттера;

TC - температура коллектора;

V - разность потенциалов между электродами, а полученную зависимость плотности тока от азимутального направления используют при математическом моделировании процессов в ТЭП.

С более высокой точностью указанные параметры можно определить в том случае, когда ВАХ экспериментальных ТЭП измеряют при групповых испытаниях этих ТЭП с использованием единой вакуумно-цезиевой системы.

Использование нескольких экспериментальных ТЭП, различающихся ориентацией кристаллографических граней на поверхности эмиттера, позволяет получить локальные ВАХ для различных участков поверхности полигранного монокристаллического эмиттера цилиндрического ТЭП. Измерение ВАХ экспериментальных ТЭП при групповых испытаниях с использованием единой вакуумно-цезиевой системы обеспечивает идентичность условий этих испытаний.

Сущность заявляемого изобретения поясняется чертежами.

На фиг. 1 изображены поперечное сечение эмиттера 1 и контур монокристаллической заготовки 2.

На фиг. 2 представлено расчетное распределение температуры по азимуту эмиттера в одном из его сечений. Кривая 3 соответствует результату, полученному с учетом азимутальной неравномерности эмиссионных свойств, а кривая 4 - полученному с использованием способа, принятого за прототип.

Заявляемый способ в соответствии с изобретением реализуется следующим образом.

Например, на поверхность цилиндрического монокристаллического вольфрамового эмиттера с осевой кристаллографической ориентацией <111> выходят преимущественно грани {110} и {112}, а соотношение площадей поверхности, занимаемых этими гранями, изменяется в пределах азимутальной координаты от 0° до 30°, как это показано на фиг. 1. При определении выходных характеристик, а также распределений температуры и электрического потенциала по поверхности электродов многоэлементного электрогенерирующего канала (ЭГК) для космической ЯЭУ с указанным эмиттером в соответствии с изобретением:

1. Определялась доля поверхности эмиттера ТЭП, приходящаяся на каждую из кристаллографических граней {110} и {112} путем измерения вакуумной работы выхода по 1/6 окружности эмиттера (~5,3 эВ для грани {110}, ~4,7 эВ для грани {112}).

2. Проводились групповые испытания и измерения ВАХ двух плоских ТЭП с изотермичными эквипотенциальными электродами, имеющих монокристаллические эмиттеры, поверхность которых совпадает с кристаллографическими гранями {110} и {112} в экспериментальной установке, имеющей единую вакуумно-цезиевую систему.

3. Производилось математическое моделирование процессов теплоэлектропроводности в МЭЗ и электродах цилиндрического ТЭП с полигранным монокристаллическим эмиттером путем численного решения на ЭВМ системы дифференциальных уравнений в частных производных, описывающих процессы теплоэлектропроводности в электродах ТЭП и его МЭЗ с подстановкой в эти уравнения значений плотности тока в МЭЗ, полученных из соотношения

где TE - температура эмиттера;

TC - температура коллектора;

V - потенциалы электродов;

θ - азимутальная координата;

S{110}(θ) - доля площади эмиссионной поверхности, приходящаяся на кристаллографическую грань {110};

j{110}(TE,TC,V) и j{112)(TE,TC,V) - зависимости ВАХ от температуры электродов, полученные по результатам испытаний плоских ТЭП, поверхности эмиттеров которых совпадают с кристаллографическими гранями {110} и {112}.

Как следует из фиг. 2, значения температуры, полученные в рассматриваемом сечении эмиттера, на 30-50°C отличаются от температуры, полученной при математическом моделировании на основе локальных ВАХ, усредненных по всем кристаллографическим граням. При этом расчетная выходная мощность ЭГК на 5-10% выше ее значений, полученных с использованием способа, принятого за прототип.

Использование ВАХ плоских ТЭП для моделирования локальных ВАХ цилиндрических ТЭП также позволяет существенно сократить трудозатраты на проведение экспериментальных работ в связи с более простой конструкцией плоских ТЭП и установок для их испытаний, а также обеспечивает возможность регулирования величины МЭЗ.


СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРЕННИХ ПАРАМЕТРОВ И ВЫХОДНЫХ ХАРАКТЕРИСТИК ЦИЛИНДРИЧЕСКОГО ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРЕННИХ ПАРАМЕТРОВ И ВЫХОДНЫХ ХАРАКТЕРИСТИК ЦИЛИНДРИЧЕСКОГО ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРЕННИХ ПАРАМЕТРОВ И ВЫХОДНЫХ ХАРАКТЕРИСТИК ЦИЛИНДРИЧЕСКОГО ТЕРМОЭМИССИОННОГО ПРЕОБРАЗОВАТЕЛЯ
Источник поступления информации: Роспатент

Showing 41-50 of 79 items.
20.11.2015
№216.013.9361

Способ измерения удельной поверхности материалов

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют....
Тип: Изобретение
Номер охранного документа: 0002569347
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9e25

Способ коррозионной защиты поверхностей сталей и сплавов

Изобретение относится к коррозионной защите, а именно к способу нанесения защитной коррозионно-стойкой пленки из нитрида титана на поверхность образцов из стали и сплава на основе хрома. Перед нанесением защитной пленки с поверхности образцов при комнатной температуре в инертной среде...
Тип: Изобретение
Номер охранного документа: 0002572115
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.c110

Способ переработки кремнийсодержащих отходов уранового производства

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002576819
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
12.01.2017
№217.015.5d74

Способ осаждения монокристаллических сплавов на основе вольфрама

Изобретение относится к технологии получения вольфрама, легированного ниобием или танталом, и может быть использовано в электровакуумном приборостроении, электронике. Способ осаждения монокристаллических сплавов на основе вольфрама методом химических транспортных реакций на трубчатую...
Тип: Изобретение
Номер охранного документа: 0002590568
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.73e3

Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения....
Тип: Изобретение
Номер охранного документа: 0002597875
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7861

Способ определения прочности покрытия из керамических наночастиц

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц...
Тип: Изобретение
Номер охранного документа: 0002599334
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.82ec

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают...
Тип: Изобретение
Номер охранного документа: 0002601477
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83a7

Способ получения высокодисперсных карбидов переходных металлов

Изобретение относится к области химической технологии неорганических веществ, конкретно - к получению высокодисперсных тугоплавких карбидов переходных металлов в гранулированном виде, в том числе смешанных композитов на их основе. Описан способ получения высокодисперсных карбидов переходных...
Тип: Изобретение
Номер охранного документа: 0002601484
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b04f

Способ переработки уран-циркониевых отходов

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы...
Тип: Изобретение
Номер охранного документа: 0002613352
Дата охранного документа: 16.03.2017
Showing 41-50 of 74 items.
20.11.2015
№216.013.9361

Способ измерения удельной поверхности материалов

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют....
Тип: Изобретение
Номер охранного документа: 0002569347
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9e25

Способ коррозионной защиты поверхностей сталей и сплавов

Изобретение относится к коррозионной защите, а именно к способу нанесения защитной коррозионно-стойкой пленки из нитрида титана на поверхность образцов из стали и сплава на основе хрома. Перед нанесением защитной пленки с поверхности образцов при комнатной температуре в инертной среде...
Тип: Изобретение
Номер охранного документа: 0002572115
Дата охранного документа: 27.12.2015
10.03.2016
№216.014.c110

Способ переработки кремнийсодержащих отходов уранового производства

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002576819
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
12.01.2017
№217.015.5d74

Способ осаждения монокристаллических сплавов на основе вольфрама

Изобретение относится к технологии получения вольфрама, легированного ниобием или танталом, и может быть использовано в электровакуумном приборостроении, электронике. Способ осаждения монокристаллических сплавов на основе вольфрама методом химических транспортных реакций на трубчатую...
Тип: Изобретение
Номер охранного документа: 0002590568
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.73e3

Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения....
Тип: Изобретение
Номер охранного документа: 0002597875
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7861

Способ определения прочности покрытия из керамических наночастиц

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц...
Тип: Изобретение
Номер охранного документа: 0002599334
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.82ec

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают...
Тип: Изобретение
Номер охранного документа: 0002601477
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83a7

Способ получения высокодисперсных карбидов переходных металлов

Изобретение относится к области химической технологии неорганических веществ, конкретно - к получению высокодисперсных тугоплавких карбидов переходных металлов в гранулированном виде, в том числе смешанных композитов на их основе. Описан способ получения высокодисперсных карбидов переходных...
Тип: Изобретение
Номер охранного документа: 0002601484
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b04f

Способ переработки уран-циркониевых отходов

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы...
Тип: Изобретение
Номер охранного документа: 0002613352
Дата охранного документа: 16.03.2017
+ добавить свой РИД