×
27.04.2016
216.015.3827

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СВАРНОГО СОСТАВНОГО ОБРАЗЦА ТИПА СТ ДЛЯ ИСПЫТАНИЙ НА ТРЕЩИНОСТОЙКОСТЬ ОБЛУЧЕННОГО МЕТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного металла обломка ранее испытанного образца-свидетеля для корпусов реакторов типа ВВЭР. На первом этапе изготавливают вставку. На втором этапе выбирают металл для изготовления обоймы, для этого определяют предел текучести облученного металла вставки и по диаграмме «предел текучести металла вставки - предел текучести металла обоймы» определяют предел текучести металла обоймы и из выбранного металла изготавливают элементы обоймы. С помощью электронно-лучевой или лазерной сварки выполняют приварку в определенной последовательности отдельных элементов обоймы к вставке. Вначале приваривают передний элемент обоймы, затем поочередно приваривают боковые элементы обоймы и после этого последним сварным швом приваривают задний элемент обоймы. При этом создают условия, чтобы температура в центре вставки облученного металла в процессе сварки не превышала температуру облучения. Затем прорезают задний элемент обоймы до вставки и потом после циклического нагружения и выращивания усталостной трещины до середины вставки. Последующее испытание сварного составного образца на трещиностойкость проводят по стандартной методике. Обеспечивается повышение достоверности результатов испытаний на трещиностойкость облученного металла путем испытания предлагаемого сварного составного образца типа СТ за счет снижения остаточных сварочных напряжений при сохранении свойств облученного металла. 1 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к методам испытаний металлов на трещиностойкость [1-4], в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла, и может быть использовано в научно-исследовательских организациях для определения свойств металла эксплуатирующихся корпусов водо-водяных энергетических реакторов (ВВЭР).

Для надежной оценки текущего состояния и определения ресурса корпусов ВВЭР необходимо получение прямых экспериментальных данных по трещиностойкости металла корпусов реакторов, которые непосредственно используются при расчете на сопротивление хрупкому разрушению корпусов реакторов. В настоящее время большинство данных по трещиностойкости металла корпусов реакторов действующих ВВЭР получено при испытаниях малоразмерных (сечением 10×10 мм) образцов-свидетелей типа Шарпи с трещиной. Известно, что трещиностойкость, определенная на малоразмерных образцах такого типа, является завышенной по сравнению с трещиностойкостью, определенной на образцах типа СТ, что может привести к неадекватным оценкам при расчетах на сопротивление хрупкому разрушению корпусов реакторов. Кроме того, количество образцов-свидетелей для действующих ВВЭР достаточно ограничено, что может привести к дополнительным погрешностям при определении трещиностойкости металла.

Известен способ изготовления сварного составного образца типа СТ, описанный в [5] и приятый нами за прототип, суть которого заключается в том, что вначале из обломка испытанного ранее облученного образца-свидетеля изготавливают вставку, затем из необлученного металла изготавливают обойму по форме и размерам, соответствующую стандартному образцу СТ, далее в центре обоймы прорезают сквозное гнездо по размерам, соответствующим размерам вставки, после этого вставку приваривают к обойме по периметру с помощью электронно-лучевой или лазерной сварки, далее прорезают надрез и симметрично ему изготавливают два отверстия для захватов испытательной машины, затем путем приложения к образцу знакопеременной нагрузки выращивают усталостную трещину до середины вставки с последующим испытанием полученного образца в соответствии со стандартной методикой испытаний на трещиностойкость.

Недостатком известного способа изготовления образца является то, что в процессе приварки вставки к жесткой конструкции обоймы в металле вставки возникают растягивающие остаточные сварочные напряжения, которые в дальнейшем при испытаниях на трещиностойкость приводят к существенному занижению определяемой трещиностойкости исследуемого металла вставки.

Техническим результатом изобретения является повышение достоверности результатов испытаний на трещиностойкость облученного металла путем испытания предлагаемого сварного составного образца типа СТ за счет снижения остаточных сварочных напряжений при сохранении свойств облученного металла.

Технический результат достигается за счет того, что в предлагаемом способе изготовления сварного составного образца типа СТ для испытания на трещиностойкость облученного металла, включающем изготовление вставки из облученного металла обломка ранее испытанного образца-свидетеля и обоймы из необлученного металла, создание в обойме сквозного гнезда по размерам, соответствующим размерам вставки, размещение в нем вставки и приварку с помощью электронно-лучевой или лазерной сварки вставку к обойме, прорезку на обойме образца надреза, изготовление в обойме отверстий для захватов испытательной машины, расположенных симметрично относительно надреза, далее путем приложения к образцу знакопеременной нагрузки производят выращивание усталостной трещины до середины вставки с последующим испытанием на трещиностойкость изготовленного образца в соответствии со стандартной методикой, согласно изобретению предварительно определяют предел текучести облученного металла вставки и далее по диаграмме «предел текучести металла вставки - предел текучести металла обоймы» выбирают металл для обоймы, а саму обойму изготавливают составной, состоящей из отдельных элементов, которые последовательно приваривают к облученной вставке, вначале приваривают к ней передний элемент обоймы, затем поочередно приваривают к вставке оба боковых элемента обоймы и после этого последним сварным швом приваривают задний элемент обоймы, при этом создают условия, чтобы температура в центре вставки облученного металла в процессе сварки не превышала температуру облучения, затем прорезают задний элемент обоймы до вставки, потом после циклического нагружения и выращивания усталостной трещины до середины вставки последующее испытание сварного составного образца на трещиностойкость проводят по стандартной методике.

Предлагаемый способ изготовления сварного составного образца типа СТ с использованием электронно-лучевой или лазерной сварки и предлагаемой последовательностью выполнения сварных швов, показанной в фиг. 1, обеспечивает следующее.

1. Значения остаточных сварочных напряжений и их градиент в центре вставки практически равны нулю и, как следствие, отсутствие их влияния на величину трещиностойкости, определяемую при испытаниях предлагаемого сварного составного образца. Такой результат является следствием того, что в предлагаемом образце обойма является не цельной, как в образце-прототипе, а составной, и сварка отдельных элементов обоймы со вставкой проводится с помощью прямолинейных швов отдельно и последовательно друг за другом. Это приводит к тому, что при сварке одного шва свариваемые части имеют свободную усадку по сравнению с образцом-прототипом, в котором сварка производится в жесткий контур, в результате чего появляются значительные растягивающие остаточные напряжения. Кроме того, предлагаемая последовательность выполнения швов, представленная в фиг. 1, приводит к тому, что в результате суммирования знакопеременных продольных и поперечных остаточных сварочных напряжений от каждого шва результирующие остаточные сварочные напряжения в центре вставки практически равны нулю.

2. При изготовлении образца с использованием сварки необходимо обеспечить условия, при которых температура металла в центре вставки в процессе сварки не превысит температуру облучения. Такое ограничение по температуре необходимо во избежание «отжига» радиационных дефектов в облученном металле в центре вставки, поскольку при перегреве металла при сварке определяемая трещиностойкость на сварных составных образцах будет завышена вследствие восстановления свойств облученного металла. Применение в предлагаемом способе высокоскоростной электронно-лучевой или лазерной сварки для сварки швов с полным охлаждением после выполнения каждого шва позволяет обеспечить температуру металла в центре вставки в процессе сварки, не превышающую температуру облучения.

3. Важным фактором, влияющим на определяемую трещиностойкость металла вставки, являются механические свойства металла обоймы. В самом деле, если предел текучести металла обоймы будет значительно ниже, чем предел текучести металла вставки , то при нагружении образца деформироваться будет в основном обойма. В этом случае значение определяемой трещиностойкости KJC будет завышено из-за завышенного значения перемещений по линии действия нагрузки. В противоположном случае, когда трещиностойкость KJC будет занижена. В предлагаемом способе изготовления сварного составного образца выбор значения предела текучести металла обоймы выполняется по диаграмме «предел текучести металла вставки - предел текучести металла обоймы», представленной в фиг. 2. Данная диаграмма была получена авторами на основе трехмерных численных расчетов напряженно-деформированного состояния методом конечных элементов для стандартного и сварного составного образца типа СТ. Построение диаграммы осуществлялось путем определения таких сочетаний значений пределов текучести металла вставки и обоймы, которые обеспечивают идентичность напряженно-деформированного состояния рассмотренных образцов. Поэтому значение предела текучести металла обоймы, определенное по этой диаграмме, обеспечивает одинаковое деформирование металла вставки у вершины трещины предлагаемого сварного составного СТ образца и стандартного цельного образца типа СТ, изготовленного целиком из металла вставки, что приводит к практически одинаковым результатам при испытаниях на трещиностойкость этих образцов.

4. Геометрические размеры предлагаемого сварного составного СТ образца соответствуют размерам стандартных СТ образцов и экспериментальное определение трещиностойкости выполняется согласно стандартным методикам испытаний на трещиностойкость.

5. В предлагаемом способе изготовления сварного составного образца типа СТ рекомендуется использовать вставки с типовым размером - L×10 мм, где L=10÷20 мм. Данные размеры обусловлены размерами обломков образцов Шарпи с трещиной, из которых изготавливают вставки. Этапы изготовления сварного составного образца типа СТ со вставкой L×10 мм показаны в фиг. 1.

6. Применение предложенного способа изготовления сварных составных образцов типа СТ позволит в три раза увеличить количество экспериментальных данных для исследуемого облученного металла корпуса реактора, поскольку из обломков одного испытанного ранее образца-свидетеля типа Шарпи с трещиной можно дополнительно изготовить два образца типа СТ.

Экспериментальная верификация предлагаемого способа изготовления сварного составного СТ образца была выполнена путем сравнения величины референсной температуры хрупкости, Т0, рассчитанной на основании экспериментальных данных по трещиностойкости, полученных с использованием сварных составных СТ образцов и цельных стандартных СТ образцов. В качестве исследуемых материалов был использован металл корпусов реакторов типа ВВЭР в различных состояниях: в исходном (необлученном) и облученном. В качестве необлученного металла была использована сталь марки 15Х2НМФА-А, из которой изготовляются корпусы реакторов ВВЭР-1000. Химический состав исследованного металла стали марки 15Х2НМФА-А представлен в таблице 1.

В качестве облученного металла был использован основной металл (сталь марки 25Х3НМ) корпуса реактора типа ВВЭР, который эксплуатировался 30 лет. Химический состав исследованного металла стали марки 25Х3НМ представлен в таблице 2.

Из необлученного металла стали марки 15Х2НМФА-А и облученного металла стали марки 25Х3НМ были изготовлены цельные стандартные образцы типа СТ. Изготовление цельных стандартных СТ образцов было выполнено согласно ASTM Е 399 [2]. Было изготовлено 12 цельных стандартных СТ образцов из стали марки 15Х2НМФА-А и 11 из стали марки 25Х3НМ.

Изготовление сварных составных образцов типа СТ было выполнено согласно описанному выше способу изготовления сварных составных образцов типа СТ. Вначале было изготовлено и испытано на растяжение по 3 гладких цилиндрических образца (диаметр 3 мм, длина рабочей части 15 мм) для определения пределов текучести исследуемых материалов. Изготовление и испытания на растяжение проводили согласно ГОСТ 1497-84 [6]. Средние значения пределов текучести исследованных материалов при 20°С, определенные по результатам испытаний на растяжение, составили: для необлученной стали марки 15Х2НМФА-А σ0,2=550 МПа, для облученного металла стали марки 25Х3НМ σ0,2=596 МПа. Учитывая полученные значения пределов текучести, по диаграмме в фиг. 2 были определены допустимые значения пределов текучести для металла обоймы: σ0,2±Δσ=530±165 МПа для необлученного металла и σ0,2±Δσ=580±170 МПа для облученного металла. Учитывая эти значения, в качестве металла для изготовления обоймы для образца как с облученной, так и с необлученной вставкой, была выбрана корпусная реакторная сталь 15Х2НМФА-А с пределом текучести, равным 550 МПа.

Из выбранных материалов были изготовлены элементы обоймы и вставки с размерами, обеспечивающими изготовление сварного составного образца СТ с размерами стандартного образца СТ - 30×31 мм с толщиной В=10 мм. Были изготовлены вставки двух типовых размеров L×10 мм: с длиной вставки L=10 мм и L=20 мм. Вставки из облученного материала были изготовлены из половинок испытанных ранее образцов Шарпи на ударный изгиб. Сварка вставки и элементов обоймы была выполнена согласно описанному выше способу изготовления составных сварных образцов. Вначале с помощью электронно-лучевой сварки приварили к вставке передний элемент составной обоймы, затем поочередно два боковых элемента обоймы и после этого приварили задний элемент обоймы. В процессе сварки контролировали, чтобы температура металла в центре вставки не превышала температуру облучения 270°С. После приварки заднего элемента обоймы в нем наносили надрез до вставки и симметрично ему высверливали два отверстия для захватов испытательной машины. Из вершины надреза путем приложения знакопеременных нагрузок выращивали усталостную трещину. Выращивание исходных усталостных трещин на стандартных и сварных составных образцах выполнялось на резонансной испытательной машине «Румул Микротрон» (Швейцария) мощностью 5 кН в автоматическом режиме контроля величин нагрузки, количества циклов и длины трещины.

По описанному выше способу были изготовлены сварные составные СТ образцы: из стали марки 15Х2НМФА-А со вставкой L=20 мм - 12 шт., со вставкой L=10 мм - 8 шт., из стали марки 25Х3НМ со вставкой L=20 мм - 12 шт., со вставкой L=10 мм - 8 шт.

Испытания на трещиностойкость, определение значений KJC и референсной температуры хрупкости, Тo, проводили согласно [4]. Испытания на трещиностойкость образцов типа СТ выполняли на универсальной испытательной машине Zwick/Roell Z100 мощностью 100 кН (Германия). Управляющие модули установок оснащены персональными компьютерами (ПК) и соответствующим программным обеспечением, позволяющим проводить работы в режиме автоматизированного контроля. Для создания необходимой температуры испытания установка снабжена термокриокамерой, которая установлена на нагружающей раме испытательной машины. Контроль температуры осуществлялся с помощью поверенных термопар типа "хромель - алюмель" и цифрового термометра. Образцы испытывались в режиме контроля смещения по оси нагружения. При этом производилась запись диаграммы нагружения в координатах "смещение - нагрузка" в цифровом виде на ПК. Нагружение доводилось до момента скачкообразного разрушения образца. Смещение регистрировалось по датчику раскрытия трещины. В качестве датчика раскрытия трещины использовался высокотемпературный преобразователь фирмы SANDNER. Обработку диаграмм испытаний и расчет характеристик KJC и То проводили по формулам документа [4].

Величины референсной температуры хрупкости, То, полученные на основе обработки результатов испытаний на трещиностойкость KJC стандартных цельных СТ образцов и предлагаемых сварных составных СТ образцов из сталей марок 15Х2НМФА-А и 25Х3НМ, представлены таблице 3.

Как видно из таблицы 3, для стали марки 15Х2НМФА-А значение референсной температуры хрупкости, То, для стандартных цельных образцов составляет минус 124°С, а сварных составных образцов составляет минус 139°С (вставка 10×10) и минус 125°С (вставка 20×10). Максимальное различие параметра, То, для этих образцов составляет 12%. Для стали марки 25Х3НМ значение референсной температуры хрупкости, То, для стандартных цельных образцов составляет минус 84°С, а для сварных составных образцов составляет минус 86°С (вставка 10×10) и минус 94°С (вставка 20×10). Максимальное различие параметра, То, для этих образцов составляет 12%. Полученные близкие значения референсной температуры хрупкости, То, свидетельствуют о хорошем соответствии экспериментальных данных, полученных с использованием предлагаемых сварных составных образцах типа СТ, по отношению к экспериментальным данным, полученным на стандартных цельных образцах СТ.

Технико-экономические результаты по сравнению с прототипом:

Предлагаемый способ изготовления сварного составного образца типа СТ обеспечивает отсутствие влияния остаточных сварочных напряжений на величину трещиностойкости при сохранении свойств облученного металла, что позволяет повысить достоверность результатов испытаний на трещиностойкость облученного металла.

Внедрение данного способа изготовления сварного составного образца типа СТ с использованием металла обломков испытанных ранее облученных образцов-свидетелей необходимо для прямого определения трещиностойкости металла эксплуатирующихся корпусов реакторов типа ВВЭР, при этом количество экспериментальных данных, полученных в результате испытаний предлагаемых образцов с использованием обломков образцов-свидетелей, увеличивается втрое. Применение такого подхода позволит повысить безопасность эксплуатации и увеличить срок службы корпусов реакторов ВВЭР, что приведет к снижению себестоимости вырабатываемой на этих реакторах энергии.

Источники информации

1. ГОСТ 25.506-85 Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. Государственный комитет СССР по стандартам, Москва, 1985.

2. ASTM Е 399-09 Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials. Annual Book of ASTM Standard. Vol. 03.01.

3. ASTM E 1921-10 Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range. Annual Book of ASTM Standard. Vol. 03.01.

4. РД ЭО 1.1.2.09.0789-2012 Методика определения вязкости разрушения по результатам испытаний образцов свидетелей для расчета прочности и ресурса корпусов реакторов ВВЭР-1000. ОАО «Концерн Росэнергоатом», Москва, 2012.

5. van Walle Е. Reconstruction: where do we stand? // Effects of Radiation on Material: 17th International Symposium. ASTM STP 1270, 1996.

6. ГОСТ 1497-84 Металлы. Методы испытаний на растяжение. Государственный комитет СССР по стандартам, Москва, 1984.


СПОСОБ ИЗГОТОВЛЕНИЯ СВАРНОГО СОСТАВНОГО ОБРАЗЦА ТИПА СТ ДЛЯ ИСПЫТАНИЙ НА ТРЕЩИНОСТОЙКОСТЬ ОБЛУЧЕННОГО МЕТАЛЛА
СПОСОБ ИЗГОТОВЛЕНИЯ СВАРНОГО СОСТАВНОГО ОБРАЗЦА ТИПА СТ ДЛЯ ИСПЫТАНИЙ НА ТРЕЩИНОСТОЙКОСТЬ ОБЛУЧЕННОГО МЕТАЛЛА
Источник поступления информации: Роспатент

Showing 31-40 of 60 items.
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c52b

Способ химико-термической обработки деталей из сталей мартенситного класса

Изобретение относится к области технологии химико-термической обработки металлических материалов и предназначено для термической обработки деталей пар трения. Способ химико-термической обработки деталей пар трения из стали мартенситного класса включает объемную закалку заготовок из стали и...
Тип: Изобретение
Номер охранного документа: 0002574944
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0499

Наномодифицированный эпоксидный сферопластик

Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала, и может быть использовано в качестве конструкционного материала в...
Тип: Изобретение
Номер охранного документа: 0002587454
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.32f8

Сплав на основе титана

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий...
Тип: Изобретение
Номер охранного документа: 0002582171
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.9da0

Способ дуговой наплавки медно-никелевого сплава с содержанием никеля от 40 до 50% на алюминиево-никелевые бронзы

Изобретение может быть использовано для получения коррозионно-стойкого медно-никелевого покрытия на уплотнительном поле узла затвора арматуры из алюминиево-никелевой бронзы. Проводят дуговую наплавку рабочего слоя из медно-никелевого сплава через промежуточный слой. Промежуточный слой...
Тип: Изобретение
Номер охранного документа: 0002610656
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a220

Способ центробежной отливки тонкостенных труб из жаропрочных сплавов

Изобретение относится к литейному производству и может быть использовано при отливке тонкостенных труб из сложнолегированного жаростойкого жаропрочного сплава 50Х32Н43В5С2Б2, в частности труб диаметром 0,076-0,159 м, толщиной стенки 0,008-0,014 м и длиной 3,0 м. На внутреннюю поверхность формы...
Тип: Изобретение
Номер охранного документа: 0002606824
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a222

Высокопрочная износостойкая сталь для сельскохозяйственных машин (варианты)

Изобретения относятся к области металлургии, а именно высокопрочной и износостойкой стали, используемой при изготовлении высоконагруженных деталей рабочих органов почвообрабатывающих, посевных, кормоуборочных, овощеуборочных и других сельхозмашин. Сталь содержит, мас.%: углерод от более 0,30 до...
Тип: Изобретение
Номер охранного документа: 0002606825
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a47f

Способ термодиффузионного цинкования крепежных деталей из сталей бейнитного класса с одновременным повышением их хладостойкости

Изобретение относится к области химико-термической обработки изделий, а именно к технологии термодиффузионного цинкования крепежных деталей из сталей бейнитного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например, в составе...
Тип: Изобретение
Номер охранного документа: 0002607505
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b524

Литейный сплав на основе титана

Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана и предназначенным для изготовления фасонных отливок литых и сварных гребных винтов, рабочих колес водометных движителей, насосов. Литейный сплав на основе титана содержит, мас.%: алюминий...
Тип: Изобретение
Номер охранного документа: 0002614228
Дата охранного документа: 23.03.2017
Showing 31-40 of 63 items.
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c52b

Способ химико-термической обработки деталей из сталей мартенситного класса

Изобретение относится к области технологии химико-термической обработки металлических материалов и предназначено для термической обработки деталей пар трения. Способ химико-термической обработки деталей пар трения из стали мартенситного класса включает объемную закалку заготовок из стали и...
Тип: Изобретение
Номер охранного документа: 0002574944
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0499

Наномодифицированный эпоксидный сферопластик

Изобретение относится к полимерным нанокомпозитам, в частности к эпоксидным сферопластикам, содержащим полимерную матрицу и неорганические добавки, в частности стеклосферы и наноразмерные частицы неорганического материала, и может быть использовано в качестве конструкционного материала в...
Тип: Изобретение
Номер охранного документа: 0002587454
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.32f8

Сплав на основе титана

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий...
Тип: Изобретение
Номер охранного документа: 0002582171
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3472

Способ изготовления сверхпроводящих многосекционных оптических детекторов

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде...
Тип: Изобретение
Номер охранного документа: 0002581405
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.9da0

Способ дуговой наплавки медно-никелевого сплава с содержанием никеля от 40 до 50% на алюминиево-никелевые бронзы

Изобретение может быть использовано для получения коррозионно-стойкого медно-никелевого покрытия на уплотнительном поле узла затвора арматуры из алюминиево-никелевой бронзы. Проводят дуговую наплавку рабочего слоя из медно-никелевого сплава через промежуточный слой. Промежуточный слой...
Тип: Изобретение
Номер охранного документа: 0002610656
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a220

Способ центробежной отливки тонкостенных труб из жаропрочных сплавов

Изобретение относится к литейному производству и может быть использовано при отливке тонкостенных труб из сложнолегированного жаростойкого жаропрочного сплава 50Х32Н43В5С2Б2, в частности труб диаметром 0,076-0,159 м, толщиной стенки 0,008-0,014 м и длиной 3,0 м. На внутреннюю поверхность формы...
Тип: Изобретение
Номер охранного документа: 0002606824
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a222

Высокопрочная износостойкая сталь для сельскохозяйственных машин (варианты)

Изобретения относятся к области металлургии, а именно высокопрочной и износостойкой стали, используемой при изготовлении высоконагруженных деталей рабочих органов почвообрабатывающих, посевных, кормоуборочных, овощеуборочных и других сельхозмашин. Сталь содержит, мас.%: углерод от более 0,30 до...
Тип: Изобретение
Номер охранного документа: 0002606825
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a47f

Способ термодиффузионного цинкования крепежных деталей из сталей бейнитного класса с одновременным повышением их хладостойкости

Изобретение относится к области химико-термической обработки изделий, а именно к технологии термодиффузионного цинкования крепежных деталей из сталей бейнитного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например, в составе...
Тип: Изобретение
Номер охранного документа: 0002607505
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b524

Литейный сплав на основе титана

Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана и предназначенным для изготовления фасонных отливок литых и сварных гребных винтов, рабочих колес водометных движителей, насосов. Литейный сплав на основе титана содержит, мас.%: алюминий...
Тип: Изобретение
Номер охранного документа: 0002614228
Дата охранного документа: 23.03.2017
+ добавить свой РИД