×
20.04.2016
216.015.35cc

Результат интеллектуальной деятельности: ЛОПАТКА ГАЗОТУРБИННОЙ УСТАНОВКИ ИЗ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИКЕЛЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах природного газа при температурах 600-900°C. Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок содержит, мас.%: углерод 0,06-0,12; хром 15,6-16,1; кобальт 10,0-10,4; вольфрам 5,3-5,7; молибден 1,5-1,8; титан 4,3-4,6; алюминий 2,8-3,1; бор 0,01-0,02; цирконий 0,016-0,05; кремний 0,001-0,2; железо ≤0,1; медь ≤0,05; сера ≤0,005; азот ≤20 ppm; кислород ≤15 ppm, ниобий 0,1-0,3; иттрий ≤0,03; марганец 0,001-0,2; фосфор ≤0,005 и никель - остальное. Способ термической обработки лопаток включает отжиг с нагревом в инертной атмосфере, выдержкой и охлаждением и старение. Сплав характеризуется повышенными характеристиками прочности, пластичности и коррозионной стойкости жаропрочного сплава лопаток с направленной, монокристаллической и равноосной структурами в сочетании с повышенной пластичностью и структурной стабильностью на ресурс, расширение области применения сплава. 4 н. и 1 з.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля с хромом, кобальтом, вольфрамом, молибденом, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-900°С, например, лопаток с монокристаллической, направленной и равноосной структурами.

Высокие прочностные характеристики таких сплавов достигаются за счет значительного количества (35-55 ат%) упрочняющей γ′-фазы (Ni3Al), легированной титаном, ниобием, танталом и другими элементами, а также упрочнением твердого раствора (γ-фазы) кобальтом, хромом, молибденом, вольфрамом. Служебные характеристики лопаток из жаропрочных сплавов на основе никеля также зависят от способа термообработки, обеспечивающего оптимальную структуру металла и распределение в нем упрочняющих соединений.

Известен жаропрочный сплав на основе никеля для изготовления рабочих лопаток с равноосной структурой для газовых турбин и способ его термообработки.

(RU 2539643, С22С 19/05, приоритет от 19.02.2014)

Известный жаропрочный сплав содержит углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, бор, цирконий, гафний, кремний, железо, медь, серу, азот, кислород, церий, ниобий, иттрий, марганец, фосфор и никель при следующем соотношении компонентов, мас.%: углерод 0,05-0,09; хром 15,4-15,8; кобальт 10,0-10,4; вольфрам 5,0-5,3; молибден 1,6-1,8; титан 4,3-4,5; алюминий 3,0-3,2; бор 0,06-0,09; цирконий ≤0,015; гафний 0,2-0,3; кремний ≤0,1; железо ≤0,1; медь ≤0,05; сера ≤0,005; азот ≤20 ppm; кислород ≤15 ppm, церий ≤0,015; ниобий 0,1-0,2; иттрий ≤0,03; марганец ≤0,1; фосфор ≤0,005 и никель - остальное.

При осуществлении способа изготовления лопаток из известного сплава проводят термическую обработку путем отжига с нагревом, выдержкой и охлаждением и старения, при этом отжиг ведут в инертной атмосфере с нагревом со скоростью 5-10°С/мин до температуры 1060±10°С, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°С/мин до температуры 600-700°С и далее до комнатной температуры, а старение проводят при температуре 850±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры.

Известный жаропрочный сплав в термообработанном состоянии наиболее оптимально использовать для литья крупногабаритных рабочих лопаток с равноосной структурой. Из-за очень высокого содержания бора (0,06-0,09 мас.%) в габаритных рабочих лопатках не образуется рассеянная усадочная пористость. Однако высокое содержание бора приводит к выделению легкоплавкой боридной эвтектики с температурой оплавления ≈1135°С, что препятствует достижению максимально высокого уровня жаропрочности металла лопаток, поскольку при отжиге при пониженных температурах невозможно достигнуть полного растворения упрочняющей γ′-фазы (TSOLγ′>1200°С). При этом нагрев до технически допустимой температуры 1120°С не позволяет получить повышенную пластичность из-за ослабления междендритных областей за счет роста в них γ′-фазы до недопустимой величины 1,5-2,5 мкм. Все это ограничивает применение известного сплава для литья рабочих лопаток с равноосной структурой и способа его термообработки и делает нецелесообразным его применение для изготовления сопловых лопаток как в равноосном, так и монокристаллическом состояниях.

Наиболее близким по технической сущности и достигаемому результату является лопатка газотурбинной установки из жаропрочного сплава на основе никеля и способ изготовления лопаток газотурбинных установок.

(RU 2443792, С22С 19/05, опубликовано 27.02.2012)

Лопатка изготовлена из сплава, содержащего углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, бор, тантал, цирконий, гафний, кремний, железо, медь, серу, азот, кислород и никель при следующих соотношениях компонентов, мас.%: углерод 0,04-0,12; хром 11,5-12,5; кобальт 11,5-12,5; вольфрам 3,3-3,7; молибден 1,7-2,1; титан 4,85-5,15; алюминий 3,35-3,65; бор 0,01-0,02; тантал 2,3-2,7; цирконий 0,0-20 ppm; гафний 0,0-0,05; кремний менее 0,05; железо 0,0-0,15; медь 0,0-0,10; сера 0,0-0,0012, азот 0,0-25 ppm; кислород 0,0-10 ppm и никель - остальное.

Способ изготовления лопаток газотурбинных установок включает отливку лопатки и ее термообработку, причем термообработка включает нагрев до температуры 2050±25°F (1120±4°С), выдержку в течение 2 часов ±15 минут, охлаждение закалкой в потоке газа (аргон, гелий) до температуры 1100°F (593°С) или ниже, повторный нагрев до температуры 1975±25°F (1080±4°С) и выдержку в течение 4 часов ±15 минут, повторное охлаждение закалкой в потоке газа до температуры 1100°F (593°С) или ниже, нагрев сплава до температуры 1550°F±25°F (843±4°С) и выдержку (старение) в течение 24 часов±30 минут, и охлаждение сплава до температуры 1100°F (593°С) или ниже.

После термической обработки сплав имеет значительный объем упрочняющей γ′-фазы (≈56 ат%) и характеризуется повышенной жаропрочностью, однако содержит до 6% эвтектики, которая при используемой для этого сплава температуре термообработки 1120±4°С не может быть растворена (ее TSOL>1200°C), не участвует в упрочнении и приводит к повышению газоусадочной пористости. Кроме того, известный сплав не обладает достаточной коррозионной стойкостью и структурной стабильностью в процессе наработки в нем прогнозируется выпадение ≈2-3% охрупчивающей σ-фазы, что ограничивает области его применения, в том числе для изготовления лопаток с термобарьерным покрытием.

Задачей и техническим результатом изобретения является повышение характеристик прочности, пластичности и коррозионной стойкости жаропрочного сплава лопаток с направленной, монокристаллической и равноосной структурами в сочетании с повышенной пластичностью и структурной стабильностью на ресурс, расширение области применения сплава.

Технический результат достигается тем, что предложена лопатка газотурбинной установки из жаропрочного сплава на основе никеля, содержащего углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, бор, цирконий, кремний, железо, медь, серу, азот, кислород, ниобий, иттрий, марганец, фосфор и никель при следующем соотношении компонентов, мас.%: углерод 0,06-0,12; хром 15,6-16,1; кобальт 10,0-10,4; вольфрам 5,3-5,7; молибден 1,5-1,8; титан 4,3-4,6; алюминий 2,8-3,1; бор 0,01-0,02; цирконий 0,016-0,05; кремний 0,001-0,2; железо ≤0,1; медь ≤0,05; сера ≤0,005; азот ≤20 ppm; кислород ≤15 ppm, ниобий 0,1-0,3; иттрий ≤0,03; марганец 0,001-0,2; фосфор ≤0,005 и никель - ьостальное.

Технический результат также достигается тем, что жаропрочный сплав дополнительно содержит в концентрации ≤0,01 мас.% по меньшей мере три компонента, выбранных из группы: барий, ванадий, кальций, лантан, магний.

Технический результат также достигается тем, что способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля по п. 1 включает отливку лопатки и термическую обработку, при этом термическую обработку проводят в инертной атмосфере путем отжига с нагревом, выдержкой и охлаждением и старения, при этом сначала отжиг ведут с нагревом со скоростью 5-10°С/мин до температуры 1170±10°С, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°С/мин до температуры 600-700°С и далее произвольно до комнатной температуры, затем с нагревом со скоростью 5-10°С/мин до температуры 1060±10°С, выдержкой в течение 3-4 часов и охлаждением со скоростью 30-50°С/мин до комнатной температуры, а старение проводят при температуре 850±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры.

Технический результат также достигается тем, что способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля по п. 1 включает отливку лопатки и термическую обработку, при этом термическую обработку проводят в инертной атмосфере путем отжига с нагревом, выдержкой и охлаждением и старения, при этом термическую обработку ведут с нагревом со скоростью 5-10°С/мин до температуры 1180±10°С, выдержкой в течение 3-4 часов, охлаждением со скоростью 5-10°С/мин до температуры 1050±10°С и выдержкой в течение 0,5-3 часов и далее со скоростью 30-50°С/мин до комнатной температуры, а старение проводят при температуре 860±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры.

Технический результат также достигается тем, что способ изготовления лопаток газотурбинных установок из жаропрочного сплава на основе никеля по п. 1 включает отливку лопатки и термическую обработку, при этом термическую обработку проводят в инертной атмосфере путем отжига с нагревом, выдержкой и охлаждением и старения, при этом термическую обработку сначала ведут сначала с нагревом со скоростью 5-10°С/мин до температуры 1180±10°С, выдержкой в течение 3-4 часов, охлаждением со скоростью 5-10°С/мин до температуры 1050±10°С и далее со скоростью 30-50°С/мин до комнатной температуры, затем с нагревом со скоростью 5-10°С/мин до температуры 1050±10°С, выдержкой в течение 0,5-3 часов и охлаждением со скоростью 30-50°С/мин до комнатной температуры, а старение проводят при температуре 860±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры.

Дополнительное введение ниобия (до 0,3 мас.%) в сочетании с заявленным содержанием углерода (0,06-0,12 мас.%) в присутствии иттрия и марганца способствует упрочнению границ зерен сплава карбидами оптимальной морфологии, что повышает пластичность металла лопатки в сочетании с повышенной прочностью и коррозионной стойкостью.

Дополнительное введение в сплав по изобретению по меньшей мере трех компонентов, выбранных из группы: барий, ванадий, кальций, лантан, магний; в количестве 0,01 мас.% обеспечивает подавление образования легкоплавких соединений по границам зерен, что дополнительно повышает пластичность и прочность металла лопатки.

Проведение отжига в инертной атмосфере при повышенных температуре 1170÷1180±10°С в течение 3-4 часов при заданных режимах нагрева (со скоростью 5-10°С/мин) и охлаждения (со скоростью 20-50°С/мин) обеспечивает более полное растворения упрочняющей γ′-фазы, способствует формированию вторичной упрочняющей γ′-фазы оптимального размера и необходимому сочетанию прочности и пластичности. Выбранные концентрации кобальта, молибдена, хрома и вольфрама препятствуют образованию охрупчивающей σ-фазы в прочесе наработки повышает пластичность металла и повышают структурную стабильность на ресурс. Старение при температуре 850±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры обеспечивает довыделение мелкодисперсной γ′-фазы (до 0,1 мкм) и повышение кратковременной прочности.

Охлаждение после отжига в инертной атмосфере при температуре 1170±10°С со скоростью 20-50°С/мин до температуры 600-700°С и далее произвольно до комнатной температуры, последующий нагрев со скоростью 5-10°С/мин до температуры 1060±10°С, выдержка в течение 3-4 часов и охлаждение со скоростью 30-50°С/мин до комнатной температуры, а также старение при температуре 850±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры (ТО-1) наиболее целесообразно использовать при изготовлении лопаток с повышенными прочностными характеристиками.

Охлаждение после отжига в инертной атмосфере при температуре 1180±10°С со скоростью 5-10°С/мин до температуры 1050±10°С, выдержка в течение 0,5-3 часов и дальнейшее охлаждение со скоростью 30-50°С/мин до комнатной температуры, а также старение при температуре 860±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры (ТО-2) наиболее целесообразно использовать при изготовлении лопаток с повышенной пластичностью. При температуре 1050±10°С происходит подрастание вторичной γ′-фазы, обеспечивающее повышенную пластичность металла лопатки.

Охлаждение после отжига в инертной атмосфере при температуре 1180±10°С со скоростью 5-10°С/мин до температуры 1050±10°С и далее со скоростью 30-50°С мин до комнатной температуры, последующий нагрев со скоростью 5-10°С мин до температуры 1050±10°С, выдержка в течение 0,5-3 часов и охлаждением со скоростью 30-50°С/мин до комнатной температуры, а также старение при температуре 860±10°С в течение 16 часов с последующим охлаждением на воздухе до комнатной температуры (ТО-3) целесообразно использовать при нанесении на поверхность металла лопатки термобарьерного защитного покрытия, например, на основе Co-Cr-Al-Y. При этом режим нанесения термобарьерного защитного покрытия достаточно близок к режиму термической обработки при температуре 1050±10°С в течение 0,5-3 часов.

Достижение поставленного технического результата можно проиллюстрировать служебными характеристиками сплава лопатки газотурбинных установок, полученной с использованием сплава и способов по изобретению, представленными в таблицах 1 и 2. Для сравнения был использован состав известного жаропрочного сплава по патенту RU 2443792, подвергнутый термической обработке, разработанной для данного сплава. Предполагалось, что сравниваемые сплавы имели равноосную (PC) структуру, т.е. были отлиты по одинаковой технологии. Кроме того, в таблице 2 представлены служебные характеристики жаропрочного сплава по изобретению для изготовления лопатки с монокристаллической (МК) структурой.

Служебные характеристики сравниваемых металлов лопаток были оценены с использованием известной методики ФАКОМП и других известных методик расчета свойств по химическому составу сплава. Известные методики позволяют с высокой степенью достоверности оценить структурную стабильность на ресурс (образования охрупчивающих фаз), склонность к выделению в литом состоянии неравновесных эвтектических фаз, на месте которых при термообработке литых лопаток образуются поры и трещины, характеристики длительной прочности, критические точки металла лопатки и другие ее физико-механические свойства,

(Н. Harada и др., Сб. Superalloys, 1988; p.p. 733-742; Н. Harada и др., Сб. Superalloys, 2000; pp. 729-736; Н. Harada, Сб. Alloys Design for Nickel-base Superalloys, 1982, pp. 721-735).

Данные таблицы 2 показывают, что сплав по изобретению обладает оптимальным сочетанием служебных характеристик, имеет повышенную стабильность на ресурс (нет выпадения σ-фазы), более высокие показатели (в 4 раза) по коррозионной стойкости, что должно привести к повышению термоусталостных характеристик.

Сплав по изобретению с МК состоянии при рабочих температурах 850-900°С, не уступая по жаропрочности известному сплаву, превосходит его по пластичности, как и в PC состоянии по режиму ТО-2.

Состав сплава по изобретению и режимы его термообработки обеспечивают высокий уровень структурной стабильности на ресурс металла лопатки (показатели Mdy крит≤0,928 и Nv≤2.36 меньше критических значений).

Источник поступления информации: Роспатент

Showing 61-69 of 69 items.
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e2ea

Приводная газотурбинная установка газоперекачивающего агрегата с утилизационной турбоустановкой автономного электроснабжения

Изобретение относится к теплоэнергетике и может быть использовано при разработке или реконструкции многовальных газотурбинных установок (ГТУ), предназначенных для привода нагнетателей природного газа газоперекачивающих агрегатов (ГПА) и автономного электроснабжения компрессорных станций с этими...
Тип: Изобретение
Номер охранного документа: 0002626038
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e7cb

Способ получения порошков из жаропрочных никелевых сплавов

Изобретение относится к получению порошков жаропрочных никелевых сплавов. Способ включает плавление торца вращающейся цилиндрической литой заготовки потоком плазмы с обеспечением центробежного распыления расплава и образованием частиц затвердевающих в микрослитки при полете в атмосфере холодной...
Тип: Изобретение
Номер охранного документа: 0002627137
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.ed88

Электрод для получения сплава переменного состава

Изобретение относится к области металлургии и может быть использовано для получения путем переплава электродов сплавов переменного состава, используемых для исследований их свойств, а также для изготовления изделий, отдельные части которых находятся в различных эксплуатационных условиях....
Тип: Изобретение
Номер охранного документа: 0002628720
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.02d4

Способ литья крупногабаритных лопаток турбин

Изобретение относится к области технологии литейного производства и может найти применение для изготовления отливок крупногабаритных рабочих и сопловых турбинных лопаток из жаропрочных и коррозионностойких сплавов. Способ включает изготовление литейной формы, нанесение на поверхность литейной...
Тип: Изобретение
Номер охранного документа: 0002630104
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.178a

Способ определения сдвига критической температуры хрупкости сталей для прогнозирования охрупчивания корпусов реакторов типа ввэр

Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление...
Тип: Изобретение
Номер охранного документа: 0002635658
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.19b6

Жаропрочный сплав на основе никеля для литья сопловых лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых (направляющих) лопаток газотурбинных установок с равноосной и монокристаллической структурами, работающих в агрессивных...
Тип: Изобретение
Номер охранного документа: 0002636338
Дата охранного документа: 22.11.2017
04.04.2018
№218.016.31a9

Способ получения металлического порошка методом центробежного распыления, устройство для осуществления способа

Изобретение относится к получению металлического порошка центробежным распылением заготовки. Способ включает подачу заготовки во вращающийся распылительный узел и в зону плавления, плавку заготовки плазменной струей, направленной на ее торец, с обеспечением центробежного распыления посредством...
Тип: Изобретение
Номер охранного документа: 0002645169
Дата охранного документа: 16.02.2018
Showing 81-90 of 110 items.
29.05.2018
№218.016.5423

Способ прогнозирования ресурсоспособности стали для корпусов реакторов типа ввэр

Группа изобретений относится к прогнозированию работоспособности облучаемых стальных конструктивных элементов в атомной технике, а также к прогнозированию ресурсоспособности вновь разрабатываемых сталей для корпусов реакторов АЭС типа ВВЭР. Технический результат – повышение точности...
Тип: Изобретение
Номер охранного документа: 0002654071
Дата охранного документа: 16.05.2018
05.09.2018
№218.016.8360

Толстолистовая хладостойкая сталь

Изобретение относится к металлургии, а именно к хладостойким сталям, используемым при производстве толстолистового проката для изготовления сварных изделий, эксплуатируемых при пониженных (до -90°С) температурах в условиях воздействия динамических нагрузок. Сталь содержит компоненты при...
Тип: Изобретение
Номер охранного документа: 0002665854
Дата охранного документа: 04.09.2018
22.09.2018
№218.016.88f2

Способ изготовления слитка переменного состава для исследования свойств сталей в зоне сварного шва, защищенного слоем наплавки

Изобретение может быть использовано для получения образцов для исследований свойств сталей, подвергаемых нейтронному облучению, в частности корпуса атомного реактора. Изготавливают электрошлаковым переплавом три одинаковых по размерам электрода из трех разных сталей, включающих свариваемую...
Тип: Изобретение
Номер охранного документа: 0002667193
Дата охранного документа: 17.09.2018
27.12.2018
№218.016.ac3f

Порошковые жаропрочные сплавы для изготовления биметаллических изделий и составной диск, изготовленный из этих сплавов

Изобретение относится к порошковой металлургии, в частности к изготовлению высоконагруженных составных дисков с функционально градиентными свойствами для газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства,...
Тип: Изобретение
Номер охранного документа: 0002676121
Дата охранного документа: 26.12.2018
29.01.2019
№219.016.b512

Жаропрочный коррозионно-стойкий сплав на основе никеля для литья крупногабаритных рабочих и сопловых лопаток газотурбинных установок

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при...
Тип: Изобретение
Номер охранного документа: 0002678353
Дата охранного документа: 28.01.2019
29.01.2019
№219.016.b525

Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, например рабочих лопаток газовой турбины с равноосной или монокристаллической...
Тип: Изобретение
Номер охранного документа: 0002678352
Дата охранного документа: 28.01.2019
14.02.2019
№219.016.ba3a

Литая хладостойкая сталь

Изобретение относится к области металлургии, а именно к литым хладостойким сталям, используемым для отливок крупногабаритных деталей строительно-дорожных машин и горно-металлургического оборудования, эксплуатируемых при низких температурах и воздействии высоких статических, динамических и...
Тип: Изобретение
Номер охранного документа: 0002679679
Дата охранного документа: 12.02.2019
11.03.2019
№219.016.db97

Жаропрочная сталь

Изобретение относится к области металлургии, а именно к составу жаропрочной стали, предназначенной для изготовления элементов тепловых энергоблоков, работающих при температуре до 650°С, в частности труб поверхностей нагрева пароперегревателей и паропроводов. Сталь содержит углерод, кремний,...
Тип: Изобретение
Номер охранного документа: 0002425172
Дата охранного документа: 27.07.2011
11.03.2019
№219.016.dd20

Жаропрочный сплав

Изобретение относится к области металлургии, а именно к созданию жаропрочных хромоникелевых сплавов аустенитного класса, используемых для печей первичного риформинга крупнотоннажных агрегатов аммиака и метанола. Сплав содержит в мас.%: углерод 0,40-0,50, кремний 1,00-2,50, марганец 1,0-2,50,...
Тип: Изобретение
Номер охранного документа: 0002448194
Дата охранного документа: 20.04.2012
11.03.2019
№219.016.dd24

Жаропрочная сталь

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°C. Сталь содержит, мас.%: углерод 0,001- 0,009; кремний 0,005-0,10; марганец 0,2-0,4; хром 8,5-9,5; кобальт 2,5-4,0; молибден 0,4-0,6;...
Тип: Изобретение
Номер охранного документа: 0002448192
Дата охранного документа: 20.04.2012
+ добавить свой РИД