×
29.05.2018
218.016.5423

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛИ ДЛЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к прогнозированию работоспособности облучаемых стальных конструктивных элементов в атомной технике, а также к прогнозированию ресурсоспособности вновь разрабатываемых сталей для корпусов реакторов АЭС типа ВВЭР. Технический результат – повышение точности прогнозирования радиационного ресурса стали для корпусов реактора типа ВВЭР. Способ прогнозирования радиационного ресурса стали корпуса реактора типа ВВЭР включает изготовление из стали ударных образцов Шарпи, ускоренное облучение части ударных образцов потоком быстрых нейтронов до флюенса, соответствующего дозе облучения стали на прогнозируемый срок эксплуатации в составе реактора, определение для необлученных и облученных образцов критических температур хрупкости и определение радиационного ресурса стали, причем изготавливают малоразмерные ударные образцы Шарпи из стали с переменным по длине содержанием одного из компонентов и надрезом в местах с различным содержанием переменного компонента, а после ускоренного облучения и определения критических температур хрупкости прогнозный радиационный ресурс стали определяют по величине критического флюенса для заданной величины критической температуры хрупкости на зависимости критической температуры хрупкости от флюенса. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к прогнозированию работоспособности облучаемых стальных конструктивных элементов в атомной технике, а также к прогнозированию ресурсоспособности вновь разрабатываемых сталей для корпусов реакторов АЭС типа ВВЭР.

Основным критерием, на основании которого производится прогнозирование ресурсоспособности низколегированных углеродистых сталей для корпусов атомных реакторов, облучаемых в процессе эксплуатации, является их сопротивление хрупкому разрушению.

Известен способ прогнозирования степени охрупчивания теплостойкой стали, включающий:

- определение методом оже-электронной микроскопии уровня зернограничных сегрегаций фосфора в образцах-свидетелях (термокомплектах), изготовленных из стали исследуемого корпуса реактора, подвергавшихся воздействию рабочих температур в составе изделия (около 320°С) с выдержками в течение различного времени (от ~50000 до ~240000 ч);

- построение кинетической кривой (время воздействия - концентрация фосфора) и определение ее параметров;

- определение методом экстраполяции уровня накопления сегрегаций фосфора на момент времени окончания эксплуатации реактора или на момент времени продленного ресурса;

- изготовление экспериментальных образцов из стали, близкой по составу и микроструктуре к стали исследуемого корпуса реактора;

- проведение охрупчивающего отжига экспериментальных образцов в исходном состоянии при температуре максимального развития отпускной хрупкости около 500°С в течение различного времени от 500 до 3000 ч;

- определение сдвигов критической температуры хрупкости по механическим испытаниям (образцы Шарли) и уровня зернограничных сегрегаций фосфора на экспериментальных образцах, подвергшихся отжигу;

- построение калибровочной зависимости сдвига критической температуры хрупкости от зернограничной концентрации фосфора;

- определение корреляции между сдвигом критической температуры хрупкости и уровнем сегрегаций;

- определение по калибровочной зависимости экстраполяцией степени охрупчивания исследуемой стали значения для времени окончания эксплуатации реактора или на момент времени продленного ресурса;

- вывод о ресурсоспособности стали и о возможности эксплуатации изделия на продленный ресурс.

(RU 2508532, G01N 3/28, G01N 33/20, C21D 1/26, опубл. 27.02.2014)

Недостатком известного способа прогнозирования является невозможность сделать прогноз для сталей, повергаемых нейтронному облучению в процессе эксплуатации.

Наиболее близким по назначению и технической сущности является способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000, включающий:

- изготовление образцов-свидетелей Шарпи из исследуемой стали корпуса реактора;

- ускоренное облучение части образцов-свидетелей потоком быстрых нейтронов до флюенса, соответствующего дозе облучения на прогнозируемый срок (время окончания эксплуатации реактора или время продленного ресурса);

- определение критических температур хрупкости TK необлученных и облученных образцов-свидетелей и определение сдвига критической температуры хрупкости ΔTF, обусловленного облучением;

- определение величины составляющей ΔTФЛАКС, обусловленной различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов;

- определение методом оже-электронной спектроскопии уровня зернограничных сегрегаций фосфора в необлученных образцах;

- построение по кинетическому уравнению МакЛина кривой накопления сегрегаций фосфора в зависимости от времени эксплуатации реактора;

- определение экстраполяцией уровень зернограничных сегрегаций фосфора на прогнозируемый срок эксплуатации стали;

- определение составляющей ΔTT, обусловленной протеканием сегрегационных процессов за длительный период при рабочей температуре, на основании экспериментальной калибровочной зависимости между уровнем зернограничной сегрегации и сдвигом критической температуры хрупкости;

- определение общего сдвига критической температуры хрупкости, лимитирующий ресурс корпуса реактора в отдаленном периоде как сумму сдвигов ΔTK=ΔTF+ΔTФЛАКС+ΔTT;

- определение ресурса корпуса по величине общего сдвига критической температуры хрупкости.

(RU 2534045, G21C 17/00, опубл. 27.11.2014)

Недостатком известного способа прогнозирования является определение прогнозного ресурса стали корпуса реактора (как действующего, так и для проектируемого) по величине общего сдвига критической температуры хрупкости, без аддитивного учета величин критической температуры хрупкости необлученных образцов для испытаний и величины критического флюенса для заданной величины критической хрупкости стали. Это не обеспечивает точности прогноза. Кроме того, известный способ прогнозирования требует большого числа образцов при определении радиационного ресурса новых перспективных сталей, разрабатываемых для корпусов реакторов типа ВВЭР.

Задачей и техническим результатом изобретения является повышение точности прогнозирования радиационного ресурса стали для корпусов реактора типа ВВЭР как на стадии разработки состава стали для корпусов реакторов, так и при эксплуатации стали в действующем корпусе реактора.

Технический результат достигают тем, что способ прогнозирования радиационного ресурса стали корпуса реактора типа ВВЭР включает изготовление из стали ударных образцов Шарпи, ускоренное облучение части ударных образцов потоком быстрых нейтронов до флюенса, соответствующего дозе облучения стали на прогнозируемый срок эксплуатации в составе реактора, определение для необлученных и облученных образцов критических температур хрупкости и определение радиационного ресурса стали, причем изготавливают малоразмерные ударные образцы Шарпи из стали с переменным по длине содержанием одного из компонентов и надрезом в местах с различным содержанием переменного компонента, а после ускоренного облучения и определения критических температур хрупкости прогнозный радиационный ресурс стали определяют по величине критического флюенса для заданной величины критической температуры хрупкости на зависимости критической температуры хрупкости от флюенса.

Технический результат также достигают тем, что способ прогнозирования радиационного ресурса стали корпуса реактора типа ВВЭР включает изготовление из стали корпуса реактора ударных образцов Шарпи, ускоренное облучение части ударных образцов потоком быстрых нейтронов до флюенса, соответствующего дозе облучения, превышающее прогнозируемое время продленного ресурса корпуса, определение для необлученных и облученных образцов критических температур хрупкости и определение ресурса корпуса реактора, причем изготавливают дополнительные ударные образцы из стали корпуса с различным содержанием одного из компонентов, а после ускоренного облучения и определения критических температур хрупкости всех изготовленных образцов прогнозный радиационный ресурс стали определяют по величине критического флюенса для заданной величины критической температуры хрупкости на общей зависимости критической температуры хрупкости от флюенса.

Технический результат также достигают тем, что дополнительные ударные образцы с различным содержанием одного из компонентов содержат другие компоненты в пределах марочного состава стали, а при изготовлении образцов с переменным или различным составом в качестве изменяемого компонента стали используют компонент, выбранный из группы: никель, фосфор, медь.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1. Для прогнозирования радиационного ресурса корпуса реактора типа ВВЭР, например ВВЭР-440, при разработке перспективной (исследуемой) стали для активной зоны корпуса реактора из стали типа 15Х2НМФА-А с содержанием никеля 1,16%, фосфора 0,0025% и меди 0,025% методом аргонодугового переплава изготавливают заготовки корпусной стали:

- с переменным по длине заготовки содержанием фосфора от 0,0025 до 0,022% и с постоянным содержанием никеля 1,16% и меди 0,025%;

- с переменным по длине заготовки содержанием меди от 0,025 до 0,090% и с постоянным содержанием никеля 1,16% и фосфора 0,0025%.

Содержание других компонентов исследуемой стали находятся в пределах марочного состава исследуемой стали.

Из заготовок исследуемой корпусной стали изготавливают малоразмерные ударные образцы размером 5×5×27,5 мм (или меньших размеров), у которых надрезы выполнены в местах с различным содержанием переменного компонента (фосфора или меди)

Аналогично изготавливают малоразмерные образцы с переменным содержанием никеля или любого другого компонента исследуемой стали.

Дополнительно для исследований могут быть изготовлены ударные образцы из заготовок с содержанием никеля 0,07-0,17%, фосфора 0,006-0,010% и меди 0,04-0,10% и других элементов в пределах марочного состава исследуемой стали.

Затем часть малоразмерных образцов подвергают ускоренному облучению до флюенса 450×1022м-2, который соответствует прогнозируемому сроку эксплуатации стали в активной зоне корпуса реактора или даже превышать его, так как фактические флюенсы при эксплуатации корпуса реактора ВВЭР-440 могут существенно превышать величину 450×1022м-2.

Для всех образцов, включая необлученные, нормативными методами испытаний определяют критическую температуру хрупкости TK и определяют зависимости критической температуры хрупкости TK (фиг. 1) для образцов с различными концентрациями компонентов с применением регрессионного анализа (определяют дозовременные зависимости ДВЗ).

Верхние ДВЗ TK (консервативные границы разброса исходных данных) лабораторного металла 15Х2НМФА-А () и экспериментального металла 15Х2МФА-А () пересекаются при TK=48°С и флюенсе 130×1022м-2.

Следовательно, корпусную сталь 15Х2НМФА-А целесообразно использовать при флюенсе F<130×1022м-2, а корпусную сталь 15Х2МФА-А целесообразно использовать при флюенсе F>130×1022м-2.

Для стали 15Х2МФА-А с содержанием никеля 0,07-0,17% заданной величине критической температуры TK=30°С соответствует флюенс F<40×1022м-2, что позволяет сделать прогноз о том, что сталь указанного состава не удовлетворяет требованию 60 лет к радиационному ресурсу корпусов реакторов ВВЭР-1200.

Для стали с содержанием никеля (1,16%), заданной величине критической температуры ТК=30°С соответствует величина флюенса F=75×1022м-2 и TKA=18°С при FK, что позволяет сделать прогноз о том, что сталь 15Х2НМФА-А удовлетворяют требованию 60 лет к радиационному ресурсу корпусов реакторов ВВЭР-1200.

Пример 2. Прогнозирование радиационного ресурса корпусной стали реактора типа ВВЭР, например, ресурса стали корпуса действующего реактора ВВЭР-1000, с целью продления проектного ресурса реактора ведут следующим образом.

Для прогнозирования используют стандартные ударные образцы-свидетели из стали корпуса исследуемого реактора, которые подверглись различным дозам облучения быстрыми нейтронами при флаксах, соответствующих процессу эксплуатации реактора.

Верхняя ДВЗ TK () лабораторного металла 15Х2НМФА-А подтверждается результатами испытаний образцов-свидетелей при флюенсе до 108×1022м-2 (фиг. 2), которые также удовлетворяют требованию 60 лет к радиационному ресурсу корпусов реакторов ВВЭР-1200.

Дополнительно изготавливают стандартные ударные образцы 10×10×55 мм из экспериментальных промышленных заготовок исследуемой стали с содержанием никеля, фосфора, меди и остальных компонентов стали в пределах марочного состава (фиг. 3).

Затем часть образцов подвергают ускоренному облучению различными дозами потока быстрых нейтронов до уровня флюенса 150×1022м-2, который может быть равен или превышать флюенс продленного срока эксплуатации корпуса реактора типа ВВЭР-1000.

Затем для всех используемых образцов, включая необлученные, стандартными методами испытаний определяют критическую температуру хрупкости TK и дозовременные зависимости критической температуры хрупкости TK, характеризующиеся завышенной консервативностью.

Согласно данным фигуры 2 заданной величине критической температуры TK=45°С для корпусных материалов ВВЭР-1000 соответствует критический флюенс F=64×1022м-2, что позволяет сделать прогноз, что проектный ресурс корпусной стали 15Х2НМФА-А ВВЭР-1000 составляет 30 лет.

Для продления ресурса корпусной стали 15Х2НМФА-А ВВЭР-1000 используют ДВЗ TK лабораторного металла, подтвержденную результатами испытаний образцов-свидетелей и пересекающую линию критической температуры TK=45°С при флюенсе 130×1022м-2, практически в 2 раза превышающем проектный ресурс.

Статистическую обработку результатов исследований производят с применением регрессионного анализа, что позволяет обеспечить достижение поставленного технического результата: повышение точности прогнозирования радиационного ресурса стали для корпусов реактора типа ВВЭР как при разработке состава стали для корпусов реакторов, так и при оценке величины продленного ресурса действующего реактора.

Регрессия является инструментом пакета анализа данных Microsoft Excel и используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных.


СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛИ ДЛЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛИ ДЛЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛИ ДЛЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛИ ДЛЯ КОРПУСОВ РЕАКТОРОВ ТИПА ВВЭР
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
29.12.2017
№217.015.f46d

Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин, работающих при ультрасверхкритических параметрах пара

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с...
Тип: Изобретение
Номер охранного документа: 0002637844
Дата охранного документа: 07.12.2017
17.08.2018
№218.016.7c62

Способ получения порошка стали

Изобретение относится к области порошковой металлургии легированных сталей, используемых в производстве коррозионностойких и износостойких изделий методами традиционной порошковой металлургии, 3D печати, МИМ-технологий. Способ получения порошка стали включает хлорирование отходов стали в...
Тип: Изобретение
Номер охранного документа: 0002664110
Дата охранного документа: 15.08.2018
30.03.2019
№219.016.f95b

Устройство для извлечения упавших предметов ядерного реактора

Изобретение относится к атомному машиностроению. Устройство для извлечения упавших предметов ядерного реактора содержит подвижную платформу с грузоподъемным устройством, привод, вертикальную полую штангу, соединенную со средством захвата, включающим лапки захвата, соединенные с поворачиваемыми...
Тип: Изобретение
Номер охранного документа: 0002683581
Дата охранного документа: 29.03.2019
Showing 1-10 of 102 items.
10.03.2013
№216.012.2e1c

Сталь

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления массивных изделий, в частности валов роторов турбогенераторов. Сталь содержит компоненты при следующем соотношении, мас.%: углерод 0,20-0,23, кремний 0,01-0,07, марганец 0,3-0,4, хром 1,45-1,60, никель...
Тип: Изобретение
Номер охранного документа: 0002477335
Дата охранного документа: 10.03.2013
20.06.2013
№216.012.4ca5

Износостойкая метастабильная аустенитная сталь

Изобретение относится к области металлургии, а именно к аустенитным метастабильным сталям, используемым для изготовления изделий, работающих в условиях интенсивного абразивного воздействия или подвергаемых значительным ударным нагрузкам, в том числе для изготовления горнодобывающего и...
Тип: Изобретение
Номер охранного документа: 0002485203
Дата охранного документа: 20.06.2013
20.09.2013
№216.012.6bf2

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, используемым для изготовления рабочих колес гидротурбин и насосов, работающих в условиях циклических знакопеременных нагрузок, кавитационной эрозии и интенсивного коррозионного воздействия в...
Тип: Изобретение
Номер охранного документа: 0002493285
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6f64

Теплостойкая сталь для водоохлаждаемых изложниц

Изобретение относится к области металлургии, а именно к изготовлению водоохлаждаемых изложниц для производства центробежно-литых труб. Сталь содержит, в мас.%: углерод 0,16-0,25, кремний 0,10-0,60, марганец 0,60-1,20, хром 1,5-2,50, никель 0,60-1,50, молибден 0,18-0,75, ванадий 0,08-0,15,...
Тип: Изобретение
Номер охранного документа: 0002494167
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.7a01

Способ вельцевания цинковых кеков

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке цинковых кеков вельцеванием. Способ вельцевания цинковых кеков включает смешение и скатывание цинковых кеков совместно с твердым углеродсодержащим материалом и вельцевание окатанного материала. При...
Тип: Изобретение
Номер охранного документа: 0002496895
Дата охранного документа: 27.10.2013
27.11.2013
№216.012.8571

Способ производства стали

Изобретение относится к черной металлургии, в частности к производству сталей с низким содержанием углерода, преимущественно для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара. Способ включает выплавку стали в сталеплавильном агрегате, выпуск...
Тип: Изобретение
Номер охранного документа: 0002499839
Дата охранного документа: 27.11.2013
20.02.2014
№216.012.a25d

Способ переработки цинксодержащих металлургических отходов

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке цинксодержащих металлургических отходов вельцеванием. Способ переработки цинксодержащих металлургических отходов включает смешение отходов с коксовой мелочью, окомкование шихты и последующее...
Тип: Изобретение
Номер охранного документа: 0002507280
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac44

Шихта для вельцевания цинксвинецоловосодержащих материалов

Изобретение относится к металлургии цветных металлов и может быть использовано для переработки цинксвинецоловосодержащих материалов, например, промпродуктов медной промышленности - цинксодержащих пылей медного производства. Шихта для вельцевания цинксвинецоловосодержащих материалов содержит...
Тип: Изобретение
Номер охранного документа: 0002509815
Дата охранного документа: 20.03.2014
27.04.2014
№216.012.bd74

Способ производства бесшовных горячекатаных труб размером 530х25-60 мм для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара из стали марки 10х9мфб-ш

Изобретение относится к трубопрокатному производству, а именно к способу производства бесшовных горячекатаных труб размером 530×25-60 мм из стали марки 10Х9МФБ-Ш для паровых котлов, паропроводов и коллекторов установок с высокими и сверхкритическими параметрами пара. Способ включает выплавку...
Тип: Изобретение
Номер охранного документа: 0002514240
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.c267

Ампульное облучательное устройство

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для...
Тип: Изобретение
Номер охранного документа: 0002515516
Дата охранного документа: 10.05.2014
+ добавить свой РИД