×
10.04.2016
216.015.2cd8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению, а именно к способам определения статического дисбаланса ротора на балансировочных ножах, и может быть использовано для статической балансировки различных роторов. Заявленный способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра, при этом в качестве измеряемого параметра используют угол наклона балансировочных ножей от первоначального горизонтального положения, изменение дисбаланса производят синхронным вращением ножей относительно оси, совпадающей с осью ротора, а измерение угла наклона ножей производят в момент начала движения ротора. Технический результат заключается в уменьшении трудоемкости и длительности за счет перехода от операций подбора масс несбалансированных грузов, поворачивающих ротор на определенный угол, к измерению четырех углов наклона ножей при одной переустановке ротора. 7 ил.
Основные результаты: Способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра, отличающийся тем, что в качестве измеряемого параметра используют угол наклона балансировочных ножей от первоначального горизонтального положения, изменение дисбаланса производят синхронным вращением ножей относительно оси, совпадающей с осью ротора, а измерение угла наклона ножей производят в момент начала движения ротора.

Изобретение относится к машиностроению, а именно к способам определения статического дисбаланса ротора на балансировочных ножах и может быть использовано для статической балансировки различных роторов.

Известен способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра. При этом в качестве измеряемого параметра при первом измерении используют угол дисбаланса, на который ротор поворачивается под действием сил тяжести из начального в устойчивое положение. При повторном измерении в качестве измеряемого параметра используют массу корректирующего груза, подбираемого для уравновешивания ротора после переустановки ротора поворотом на 90° от устойчивого равновесного положения.

(см. Левит М.Е., Рыженков В.М. «Балансировка деталей и узлов». - М.: Машиностроение, 1986, с. 62: «Станки для статической балансировки СБС-4». Методика определения статического дисбаланса, см. там же, стр. 50, рис. 2.1.в).

Недостатком известного способа является сравнительно низкая точность, не позволяющая определять статические дисбалансы роторов, недостаточно сбалансированных, но находящихся в состоянии безразличного равновесия при любом угловом положении ротора из-за действия сил трения в опорах.

Более точным является способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра. При этом в качестве измеряемых параметров используют массы корректирующих грузов, подбираемых для поворота ротора под действием сил тяжести на 45° после переустановки ротора в восемь угловых позиций.

(см. Левит М.Е., Рыженков В.М. «Балансировка деталей и узлов». - М.: Машиностроение, 1986, с. 51, «Метод кругового обхода»).

Данный способ, являющийся наиболее близким аналогом предлагаемому техническому решению, позволяет определять статические дисбалансы роторов, находящихся в состоянии безразличного равновесия при любом угловом положении ротора.

Недостатком наиболее близкого аналога является сравнительно большая трудоемкость и длительность его осуществления, связанная с необходимостью большого числа операций по подбору восьми неуравновешенных масс, поворачивающих ротор на 45°.

Техническим результатом заявленного способа является снижение длительности и трудоемкости при проведении измерений статического дисбаланса роторов.

Указанный технический результат обеспечивается тем, что в способе определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра, новым является то, что в качестве измеряемого параметра используют угол наклона балансировочных ножей от первоначального горизонтального положения, изменение дисбаланса производят синхронным вращением ножей относительно оси, совпадающей с осью ротора, а измерение угла наклона ножей производят в момент начала движения ротора.

Сущность заявленного изобретения поясняется графическими материалами, на которых:

- на фиг. 1 показано начальное положение ротора на балансировочных ножах;

- на фиг. 2 показано положение ротора на границе равновесного состояния при наклоне ножей в направлении по ходу часовой стрелки относительно оси, совпадающей с осью ротора, на чертеже совпадающей с точкой О;

- на фиг. 3 показано положение ротора на границе равновесного состояния при наклоне ножей в направлении против хода часовой стрелки;

- на фиг. 4 показано построение в системе координат XOY линии, на которой находится центр масс ротора;

- на фиг. 5 показано в повернутой на 90° системе координат XOY построение линии, на которой находится центр масс ротора;

- на фиг. 6 показано нахождение центра масс ротора, как точки пересечения построенных линий на фиг. 4 и фиг. 5;

- на фиг. 7 приведено геометрическое обоснование нахождения центра масс ротора на построенных линиях.

Заявленный способ реализуют следующим образом.

В начальном положении ротор 1 (фиг. 1) находится в состоянии безразличного равновесия на ножах 3. При этом центр масс М(хм, yм) ротора при любом угловом положении ротора на горизонтальных ножах находится внутри окружности 2 с радиусом r, равным коэффициенту трения качения ротора по ножам. Зона контакта ротора с ножами обозначена позицией 4. След 5 вектора силы тяжести mg находится в пределах зоны трения, ограниченной радиусом r в обе стороны от зоны 4 контакта.

Производят изменение дисбаланса ротора 1 относительно зоны 4 контакта ротора 1 с опорными поверхностями ножей 3 медленным синхронным вращением ножей в направлении по ходу часовой стрелки относительно оси О, совпадающей с осью ротора. В момент начала качения, когда след 5 вектора силы тяжести выходит за пределы зоны трения (фиг. 2), производят измерение угла α наклона ножей.

Аналогично производят измерение угла β наклона ножей после изменения дисбаланса ротора вращением ножей в направлении против хода часовой стрелки, как это показано на фиг. 3.

Линию, на которой находится центр масс ротора, определяют как линию, совпадающую с медианой AD треугольника ABC, стороны АВ и АС которого составляют с вертикалью OY, соответственно, углы α и β, как показано на фиг. 4.

Для построения другой линии, на которой находится центр масс ротора, переустанавливают ротор на ножах в другое угловое положение, предпочтительно поворотом ротора на 90° из соображений простоты алгоритма вычислений, например, как показано на фиг. 5, при этом ось ОХ направлена вниз чертежа. Повторяют изменение дисбаланса наклоном ножей по часовой и против часовой стрелки до моментов начала движения ротора и измеряют соответствующие углы γ и δ. Линию, на которой находится центр масс ротора, определяют как линию, совпадающую с медианой ЕН треугольника EFG, стороны EF и EG которого составляют с осью ОХ, соответственно, углы α и β, как показано на фиг. 5.

Центр масс ротора в системе координат XOY определяется как точка пересечения построенных линий, совпадающих с медианами AD и ЕН, как показано на фиг. 6.

Геометрическое подтверждение нахождения центра масс ротора на построенных линиях, совпадающих с соответствующими медианами, приведено на фиг. 7. На граничных точках зоны трения и точке М(хм, yм) центра масс построен треугольник MLN, в нем проведена медиана МА. Треугольник MLN, повернутый на 180°, займет положение треугольника APQ с медианой AM, совпадающей с МА. Треугольник ABC подобен треугольнику APQ и совпадает с ним подобными сторонами. Очевидно, что и их медианы лежат на одной прямой линии, на которой находится точка М(хм, yм) центра масс ротора. Аналогично доказывается, что центр масс лежит на линии, совпадающей с медианой ЕН.

Для получения формул аналитического расчета дисбаланса обозначим:

OD=d;

OH=h.

Уравнения линий, совпадающих с медианами имеют вид:

Решая эти уравнения совместно, найдем координаты центра масс:

где величины d и h вычисляются по формулам:

d=(tgβ-tgα)R/2;

h=(tgδ-tgγ)R/2.

Величина статического дисбаланса вычисляется по формуле:

где m - масса ротора.

Угол дисбаланса вычисляется по формуле:

ψ=arctg(yм/xм).

Таким образом, предлагаемое техническое решение позволяет определить статический дисбаланс ротора на балансировочных ножах, минуя большое число трудоемких и длительных операций подбора восьми неуравновешенных масс, поворачивающих ротор на 45° в восьми угловых положениях ротора на ножах. В предлагаемом способе определения статического дисбаланса ротора на балансировочных ножах достаточно измерить четыре угла наклона ножей и совершить одну переустановку ротора.

Способ определения статического дисбаланса ротора на балансировочных ножах, при котором производят изменение дисбаланса ротора относительно зоны контакта ротора с опорными поверхностями ножей и измеряют параметр, характеризующий величину дисбаланса, приводящего ротор к движению, затем переустанавливают ротор на ножах в другое угловое положение и повторяют изменение дисбаланса и измерение параметра, отличающийся тем, что в качестве измеряемого параметра используют угол наклона балансировочных ножей от первоначального горизонтального положения, изменение дисбаланса производят синхронным вращением ножей относительно оси, совпадающей с осью ротора, а измерение угла наклона ножей производят в момент начала движения ротора.
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СТАТИЧЕСКОГО ДИСБАЛАНСА РОТОРА НА БАЛАНСИРОВОЧНЫХ НОЖАХ
Источник поступления информации: Роспатент

Showing 41-49 of 49 items.
13.02.2018
№218.016.1f98

Головка для орбитальной сварки

Изобретение относится к области сварки и может быть использовано для сварки неповоротных стыков трубопроводов. Головка содержит основание с радиальным вырезом, сменный центрирующий вкладыш, смонтированную на основании с возможностью вращения посредством установленного на основании привода...
Тип: Изобретение
Номер охранного документа: 0002641208
Дата охранного документа: 16.01.2018
09.06.2018
№218.016.5bc6

Солнечный фотопреобразователь на основе монокристаллического кремния

Изобретение может быть использовано для создания солнечных батарей космического применения. Солнечный фотопреобразователь на основе монокристаллического кремния с n-р или р-n переходом у фронтальной поверхности, изотипным р-р или n-n тыльным потенциальным барьером для неравновесных неосновных...
Тип: Изобретение
Номер охранного документа: 0002655704
Дата охранного документа: 29.05.2018
20.03.2019
№219.016.e2e6

Оправка для ротационной вытяжки полых изделий

Изобретение относится к области обработки металлов давлением, а именно к оснастке станков для ротационной вытяжки, и может быть использовано для закрепления полых заготовок цилиндрической формы при их обработке раскаткой. Оправка содержит корпус, упор и прижимы для фиксации заготовки на корпусе...
Тип: Изобретение
Номер охранного документа: 0002682258
Дата охранного документа: 18.03.2019
04.06.2019
№219.017.72a4

Сварочная головка для автоматической орбитальной аргонодуговой сварки трубопроводов

Изобретение относится к области сварочного производства и может быть использовано в конструкциях сварочных головок для орбитальной сварки трубопроводов. Сварочная головка содержит основание, размещенные на основании планшайбу с приводом ее вращения и механизм фиксации сварочной головки на...
Тип: Изобретение
Номер охранного документа: 0002690388
Дата охранного документа: 03.06.2019
04.10.2019
№219.017.d248

Способ модифицирования жаропрочных сплавов и высоколегированных сталей

Изобретение относится к металлургии и литейному производству и может быть использовано в машиностроении, автомобиле- и тракторостроении при производстве отливок повышенного качества из высоколегированных сталей и жаропрочных сплавов. Смесь наноразмерных порошковых модификаторов предварительно...
Тип: Изобретение
Номер охранного документа: 0002701978
Дата охранного документа: 02.10.2019
06.10.2019
№219.017.d360

Устройство для сварки полым термоэмиссионным катодом

Изобретение может быть использовано для сварки полым катодом агрегатных сборок изделий ракетно-космической техники, в частности полых корпусных деталей и базовых панелей из титановых, ниобиевых и жаропрочных сплавов. Устройство содержит сварочную горелку с полым катодом и электродом, источник...
Тип: Изобретение
Номер охранного документа: 0002702169
Дата охранного документа: 04.10.2019
09.11.2019
№219.017.df9d

Устройство для преобразования вращательного движения в возвратно-поступательное

Изобретение относится к области машиностроения. Устройство для преобразования вращательного движения в возвратно-поступательное содержит корпус, в котором с возможностью возвратно-поступательного перемещения установлен ведомый элемент, кинематически связанный с ведущим элементом, имеющим...
Тип: Изобретение
Номер охранного документа: 0002705441
Дата охранного документа: 07.11.2019
13.11.2019
№219.017.e096

Устройство для регулирования хода рабочего органа

Изобретение относится к области машиностроения. Устройство для регулирования хода рабочего органа содержит ведущий элемент, имеющий возможность соединения с приводом его возвратно-поступательного перемещения и кинематически связанный с рабочим органом, а также регулировочный элемент,...
Тип: Изобретение
Номер охранного документа: 0002705728
Дата охранного документа: 11.11.2019
12.02.2020
№220.018.0191

Способ гибки труб и станок для осуществления способа

Изобретение относится к обработке металлов давлением, в частности к трубогибочному производству, и может быть использовано для изготовления труб многоколенной пространственной формы. Перед гибкой со скручиванием осуществляют нагрев зоны гибки до температуры горячей деформации материала трубы, а...
Тип: Изобретение
Номер охранного документа: 0002713899
Дата охранного документа: 10.02.2020
Showing 41-44 of 44 items.
13.02.2018
№218.016.1f98

Головка для орбитальной сварки

Изобретение относится к области сварки и может быть использовано для сварки неповоротных стыков трубопроводов. Головка содержит основание с радиальным вырезом, сменный центрирующий вкладыш, смонтированную на основании с возможностью вращения посредством установленного на основании привода...
Тип: Изобретение
Номер охранного документа: 0002641208
Дата охранного документа: 16.01.2018
09.05.2019
№219.017.4f1b

Устройство для определения массы и положения центра масс изделия

Изобретение относится к машиностроению, а именно к устройствам для определения координат центра масс преимущественно крупногабаритных изделий. Устройство для определения массы и положения центра масс изделия содержит опоры, одна из которых неподвижна, а вторая имеет подвижную часть, имеющую...
Тип: Изобретение
Номер охранного документа: 0002458328
Дата охранного документа: 10.08.2012
23.05.2023
№223.018.6c29

Способ формирования среды заданной температуры в рабочей камере 3d-принтера

Использование: для формирования среды с заданной температурой в рабочей зоне 3D-принтера. Сущность изобретения заключается в том, что равномерный тепловой поток формируется за счёт теплообмена между воздушной средой внутри рабочей зоны 3D-принтера и поверхностью источника тепла, а также за счёт...
Тип: Изобретение
Номер охранного документа: 0002736449
Дата охранного документа: 17.11.2020
23.05.2023
№223.018.6c3f

Способ формования изделий, усиленных каркасом из непрерывного волокна

Изобретение относится к области литейного производства. Способ формования термопластичных изделий включает заданное расположение, плотность и ориентацию непрерывного волокна внутри отливки, при этом каркас из непрерывного волокна и преформа из термопластичного материала предварительно...
Тип: Изобретение
Номер охранного документа: 0002738650
Дата охранного документа: 15.12.2020
+ добавить свой РИД