×
10.04.2016
216.015.2bd1

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМОМЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ, ОБЛАДАЮЩИХ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения работоспособности соединений при сборке конструкций с помощью муфт из материала с эффектом памяти формы. Сущность изобретения: испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой. Предварительно измеряют размеры диаметра его внутренней полости и высоты, затем охлаждают цилиндрический образец до температуры образования мартенситной структуры и в этом состоянии его подвергают деформированию путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости, измеренной в первоначальном аустенитном состоянии. Затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня из внутренней полости образца фиксируют величину приложенного усилия. Напряжение термомеханического возврата определяют из соотношения. Технический результат: создание способа определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала с эффектом памяти формы.
Основные результаты: Способ определения термомеханических характеристик материала, обладающего эффектом памяти формы, преимущественно напряжения термомеханического возврата, заключающийся в том, что испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой, предварительно измеряют размеры диаметра его внутренней полости и высоты, затем охлаждают цилиндрический образец до температуры образования мартенситной структуры и в этом состоянии его подвергают деформированию путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости, измеренной в первоначальном аустенитном состоянии, затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня из внутренней полости образца фиксируют величину приложенного усилия, а напряжение термомеханического возврата определяют из соотношения где P - усилие страгивания стержня из образца;k - коэффициент трения;π=3,14;d - диаметр стержня;h - высота полости цилиндрического образца круглого сечения.

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения работоспособности соединений при сборке конструкций с помощью муфт из материала с эффектом памяти формы.

Известен способ определения прочности материалов, включающий предварительное нанесение удара по эталонной гладкой поверхности образца из исследуемого материала, нанесение удара в контролируемый участок исследуемого материала со скоростью, равной скорости нанесения удара по эталонной поверхности, измерение величины импульса силы удара, дополнительное нанесение удара в контролируемый участок поверхности со скоростью, отличной от заданной, измерение величины импульса силы этого удара, учитывание при определении прочности материала этих двух измеренных величин (SU, патент №1762219, G01N 29/00, 1990).

Недостатком данного способа является отсутствие возможности определения термомеханических характеристик в материалах с памятью формы.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения термомеханических характеристик материалов с памятью формы, включающий установку образца с подведенной к нему термопарой на опоры стола, подведение к нему датчика линейных перемещений, растягивание образца при температуре существования мартенситной фазы до заданной деформации, нагрев до температуры существования аустенитной фазы, регистрацию изменения длины образца и температуры образца с получением зависимости деформации образца от температуры, определение с помощью метода касательных температуры фазовых превращений и величины восстанавливаемой деформации (RU №2478928, G01N 3/18, 2011).

Недостатком данного способа является невозможность определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала, обладающего эффектом памяти формы.

Техническим результатом заявляемого изобретения является создание способа определения величины термомеханических напряжений возврата, возникающих в радиальном направлении в термомеханических соединениях, осуществляемых с помощью муфт, изготовленных из материала с эффектом памяти формы.

Технический результат достигается за счет того, что в способе определения термомеханических напряжении возврата в материале с памятью формы, включающем измерение линейных размеров испытываемого образца, охлаждение его до перехода первоначальной аустенитной структуры в мартенситную, деформирование образца, перевод его структуры в аустенитное состояние путем нагрева, с последующим измерением термомеханических характеристик материала, согласно изобретению испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой, предварительно определив размеры его внутреннего диаметра и высоты, после этого образец охлаждают до температуры образования в нем мартенситной структуры, затем образец подвергают деформации путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости образца, измеренной в первоначальном состоянии, затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня фиксируют величину приложенного усилия, а напряжение термомеханического возврата определяют из соотношения

где P - усилие страгивания образца со стержня;

k - коэффициент трения;

π=3,14;

d - диаметр стержня,

h - высота полости цилиндрического образца круглого сечения.

Деформация образца осуществляют путем раздачи его внутренней полости на стержне диаметром на 2-8% больше диаметра внутренней его полости, измеренной в первоначальном аустенитном состоянии, производят после охлаждения его в жидком азоте, когда образец приобретает мартенситную структуру, что необходимо для создания напряжения возврата, возникающего в термомеханических соединениях, за счет стремления материала, обладающего эффектом памяти, восстановить свою первоначальную форму при последующем нагревании, что позволяет определить величину радиальных напряжений возврата в термомеханических соединениях.

Деформации образца путем вдавливания во внутреннюю его полость стержня диаметром более чем на 8% больше диаметра цилиндрического образца, измеренного в первоначальном аустенитном состоянии, может привести к его саморазрушению за счет создания высоких радиальных напряжений термомеханического возврата в процессе восстановления его формы.

После деформации образец вместе со стержнем нагревают для перевода его мартенситной структуры в аустенитную и приступают к извлечению стержня из внутренней полости образца.

Приложение усилия для извлечения стержня из внутренней полости образца позволяет преодолеть силы трения покоя за счет возникающего напряжения термомеханического возврата с сохранением неизменяемой площади контакта внутренней поверхности образца с поверхностью стержня в момент существования аустенитной фазы материала образца.

Затем прикладывают к образцу или стержню усилие для разъединения стержня из внутренней полости образца и в момент страгивания стержня (образца) фиксируют величину усилия.

Величина усилия страгивания стержня из внутренней полости образца зависит от величины деформации этой полости и возрастает с увеличением степени деформации.

Определение усилия страгивания стержня из внутренней полости образца необходимо для определения радиального напряжения термомеханического возврата формы.

Конкретный пример реализации способа определения напряжения термомеханического возврата формы материалов, обладающих эффектом памяти формы

Полый цилиндрический образец круглого сечения из никелида титана, обладающего эффектом памяти формы, в качестве которого используют кольцо с полированной внутренней поверхностью с внутренним диаметром 0,01335 м, высотой h=0,005 м, находящийся в аустенитном состоянии, погружают в среду жидкого азота для перехода его в мартенситное состояние. В мартенситном состоянии образец подвергают деформированию за счет раздачи его внутреннего диаметра на стержне с полированной наружной поверхностью:

- с диаметром до 0,01442 м, что обеспечивает деформацию образца на 8%;

- с диаметром до 0,01415 м, что обеспечивает деформацию на 6%;

- с диаметром до 0,01362 м, что обеспечивает деформацию внутреннего диаметра образца на 2% по сравнению с первоначальными размерами в аустенитном состоянии.

Затем образец и стержень извлекают из жидкого азота и образец насаживают с силой на стержень. После этого за счет естественного подвода тепла образец и стержень нагреваются до комнатной температуры. При этом образец при нагревании переходит в первоначальное аустенитное состояние и стремится восстановить первоначальную форму, плотно прижимаясь к стержню, за счет напряжений термомеханического возврата формы.

После двухчасовой выдержки в нормальных условиях при комнатной температуре стержень с образцом устанавливают на опорный элемент с цилиндрическим отверстием, диаметр которого составляет 0,015 м, т.е. больше диаметра стержня. Далее к стержню прикладывают усилие, которое фиксируют в момент начала страгивания стержня из внутренней полости образца, а напряжение термомеханического возврата определяют из соотношения

где P - усилие страгивания образца со стержня, Н;

k - коэффициент трения;

π=3,14;

d - диаметр стержня, м;

h - высота полости цилиндрического образца круглого сечения, м.

Расчет конкретной величины термомеханического напряжения возврата формы приведен ниже, исходя из конкретных данных.

Напряжение термомеханического возврата формы σ при деформации полости образца на 2% составит:

при P=2200 Н (Н Ньютон), коэффициенте трения k=0,12, π=3,14, d=0,01362 м, h=0,005 м

Напряжение термомеханического возврата формы при деформации внутренней полости образца на 6% составит:

при P=10000 Н, коэффициенте трения k=0,12, π=3,14, d=0,01415 м, h=0,005 м

Напряжение термомеханического возврата формы σ при деформации полости образца на 8% составит:

при P=11000 Н, коэффициенте трения k=0,12, π=3,14, d=0,01442 м, h=0,005 м

Предлагаемым изобретением решается задача определения напряжения термомеханического возврата в соединении, создаваемом материалом, обладающим эффектом памяти формы, необходимого для обеспечения надежной работоспособности соединений в качестве входного контроля перед изготовлением термомеханических муфт с эффектом памяти формы.

Предлагаемый способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы, позволяет повысить точность определения напряжений термомеханического возврата за счет создания схемы жесткой измерительной системы, моделирования напряжений, возникающих в радиальном направлении в термомеханических соединениях, и сохранения постоянного значения площади контакта внутренней поверхности образца с поверхностью стержня в момент нагрева до температуры существования аустенитной фазы материала образца. Предлагаемый способ прост в исполнении, экологичен и экономичен в реализации и применим для определения напряжения возврата в радиальном направлении в термомеханических соединениях с помощью муфт из материалов, обладающих эффектом памяти формы, для обеспечения их надежной работоспособности.

Способ определения термомеханических характеристик материала, обладающего эффектом памяти формы, преимущественно напряжения термомеханического возврата, заключающийся в том, что испытанию подвергают полый цилиндрический образец круглого сечения с аустенитной структурой, предварительно измеряют размеры диаметра его внутренней полости и высоты, затем охлаждают цилиндрический образец до температуры образования мартенситной структуры и в этом состоянии его подвергают деформированию путем раздачи его внутренней полости на стержне с диаметром на 2-8% больше диаметра внутренней полости, измеренной в первоначальном аустенитном состоянии, затем образец со стержнем нагревают до температуры образования аустенитной структуры и после этого прикладывают усилия для разъединения стержня и образца и в момент начала страгивания стержня из внутренней полости образца фиксируют величину приложенного усилия, а напряжение термомеханического возврата определяют из соотношения где P - усилие страгивания стержня из образца;k - коэффициент трения;π=3,14;d - диаметр стержня;h - высота полости цилиндрического образца круглого сечения.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМОМЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ, ОБЛАДАЮЩИХ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ
Источник поступления информации: Роспатент

Showing 181-190 of 253 items.
19.08.2018
№218.016.7d43

Двухканальная акустическая форсунка

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей. Двухканальная акустическая форсунка для распиливания газообразного топлива содержит полый цилиндрический корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002664489
Дата охранного документа: 17.08.2018
01.09.2018
№218.016.81f8

Корпус для микросистем измерения силы тока

Использование: для датчиков тока. Сущность изобретения заключается в том, что корпус для микросистем измерения силы тока, содержащий крышку и сопрягаемые между собой две части корпуса: основание и вставку, верхняя поверхность основания выполнена с углублением для размещения компонентов...
Тип: Изобретение
Номер охранного документа: 0002665491
Дата охранного документа: 30.08.2018
19.01.2019
№219.016.b1f5

Способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины

Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием. В процессе сварки проводится пошаговый контроль температуры поверхности сварного шва позади сварочного инструмента. При фиксировании...
Тип: Изобретение
Номер охранного документа: 0002677559
Дата охранного документа: 17.01.2019
20.02.2019
№219.016.c227

Гидроакустический приемоизлучающий тракт

Заявлен гидроакустический приемоизлучающий тракт, содержащий блок управления 1, соединенный со вторыми входами блока индикации 2 и основного усилителя 3, а также с синтезатором 4, выходы которого соединены со вторыми входами n смесителей 5-6, а также через n каналов, состоящих каждый из...
Тип: Изобретение
Номер охранного документа: 0002453861
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c24e

Гидроцилиндр с механическим затвором в крайних положениях поршня

Изобретение относится к области судостроения, машиностроения и касается вопроса создания движительно-рулевых подъемных, винторулевых и подруливающих комплексов с фиксацией полного, высшего положения механизма в крайнем положении. Гидроцилиндр с механическим замком в крайних положениях поршня...
Тип: Изобретение
Номер охранного документа: 0002458817
Дата охранного документа: 20.08.2012
20.02.2019
№219.016.c258

Способ получения деминерализованного костного матрикса в виде крошки

Изобретение относится к медицине, а именно к способу получения деминерализованного костного матрикса в виде крошки. Способ получения деминерализованного костного матрикса в виде крошки, включающий измельчение кости, обработку фрагментов кости раствором Tween-80, удаление детергента, обработку...
Тип: Изобретение
Номер охранного документа: 0002456003
Дата охранного документа: 20.07.2012
23.02.2019
№219.016.c712

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким конструкционным сталям, используемым для изготовления сосудов высокого давления, применяемых для хранения сжатых газов (воздуха) в широком диапазоне температур, в том числе на Крайнем севере. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002680557
Дата охранного документа: 22.02.2019
06.03.2019
№219.016.d2d6

Хладостойкая свариваемая arc-сталь повышенной прочности

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой arc-стали повышенной прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002681094
Дата охранного документа: 04.03.2019
11.03.2019
№219.016.dbc8

Расплав на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности нанесения покрытий из расплавов на основе цинка на стальную полосу. Расплав содержит 0,003-0,03 мас.% индия, 0,84-5,24 мас.% алюминия, 0,6-3,74 мас.% магния при соотношении алюминия к магнию 1,4:1, и цинк -...
Тип: Изобретение
Номер охранного документа: 0002470088
Дата охранного документа: 20.12.2012
11.03.2019
№219.016.ddde

Способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной пцр с детекцией в режиме реального времени и перечень последовательностей для его осуществления

Изобретение относится к биотехнологии, медицинской вирусологии, молекулярной биологии и эпидемиологии. Описан способ дифференциальной диагностики респираторных вирусных инфекций методом мультиплексной обратной транскрипции и ПЦР с детекцией в режиме реального времени. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002460803
Дата охранного документа: 10.09.2012
Showing 181-185 of 185 items.
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
+ добавить свой РИД