×
27.03.2016
216.014.c7a8

СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, касается вопроса определения прочности льда в ледовом опытовом бассейне. Способ определения прочности льда в ледовом опытовом бассейне включает измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву. При этом предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различную среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляют среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды. С использованием полученных результатов измерений характеристик льда и результатов расчета компьютера и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки. Техническим результатом является повышение точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов. 2 ил.
Основные результаты: Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.
Реферат Свернуть Развернуть

Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, и может быть использовано для оперативного определения и контроля прочности моделированного льда в процессе проведения гидродинамических экспериментов с буксируемыми моделями в ледовых опытовых бассейнах.

Известен способ определения прочности льда, согласно которому прочность льда определяют путем разрушения консольных балок льда на плаву и с использованием силового динамометра, при этом измеряют соленость льда и его среднюю по толщине температуру. Полученные результаты выводят на регистрирующую аппаратуру (Е.Б. Карулин, М.М. Карулина, А.С. Шестов и А.В. Марченко. Исследование прочности льда на изгиб в Фиордах западного Шпицбергена. Труды Центрального научно-исследовательского института имени академика А.Н. Крылова, вып. 63(347). - Спб., 2011, стр. 131-142) - прототип.

Однако определение прочности льда методом его разрушения приводит к сокращению площади ледового поля, необходимого для проведения испытаний моделей, и, кроме того, в различных точках ледового поля средняя температура льда по его толщине как правило не одинакова и, соответственно, не одинакова прочность льда в этих точках, поэтому в процессе испытаний модели путем ее буксировки в выбранной полосе ледового поля результаты эксперимента с буксируемыми моделями будут иметь погрешность и будут недостоверными.

Задачей предлагаемого изобретения является создание способа, обеспечивающего оперативное и неразрушающий лед определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов.

Для этого в способе определения прочности льда в ледовом опытовом бассейне, включающем измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, по изобретению предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f(S,t), и структуры льда для выбранного опытового бассейна. А перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер. После чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле:

где tпов. - температура поверхности льда, tприл. - температура приледного слоя воды. И с использованием полученных результатов измерений характеристик льда и результатов расчета компьютером и с применением ранее полученной зависимости σ=f(S,t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.

Предварительное определение прочности льда путем разрушения консольных балок льда на плаву в моделированных ледовых покровах, имеющие различную среднюю температуру, среднюю соленость и структуру с получением данных о прочности льда σ в виде зависимости σ=f(S,t) для выбранного опытового бассейна, позволяет использовать полученную кривую зависимости в компьютере при определении прочности льда в процессе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне.

Определение температуры поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна, с помощью измерительного тепловизора обосновано тем, что на указанном расстоянии перед движущейся моделью лед не имеет признаков разрушения, и благодаря этому обеспечивается выполнение измерений с получением данных по температуре поверхности не разрушенного перед буксируемой моделью льда, имеющего исходные физико-механические свойства.

Определение прочности льда одновременно в процессе проведения эксперимента с моделями в ледовом опытовом бассейне позволяет повысить эффективность использования ледового поля за счет исключения сокращения его площади для проведения испытаний моделей, имеющего место при определении прочности льда известным методом разрушения консольных балок на плаву.

Определение прочности льда в темпе ведения эксперимента с буксируемыми моделями в выбранной полосе ледового поля позволяет повысить точность и достоверность результатов модельного эксперимента, проводимого в ледовом поле.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью приведенного на рисунках устройства, где на фиг. 1 показан общий вид устройства, а на фиг. 2 - вид сверху на устройство на фиг. 1.

Устройство включает размещенную в ледовом опытовом бассейне буксировочную тележку 1, к которой прикреплена испытуемая модель 2 и на которой размещен измеритель температуры поверхности льда ледового покрова 3 бассейна в виде сканирующего поверхность льда измерительного тепловизора 4 (фиг. 1). Измерительный тепловизор 4 расположен на штанге 5, закрепленной на буксировочной тележке 1, и размещен непосредственно перед моделью 2 на расстоянии L, равном не менее восьми толщинам ледового покрова 3 опытового бассейна (фиг. 1). Тепловизор 4 установлен с возможностью осуществления по штанге 5 возвратно-поступательных движений поперек направления движения модели 2 в зоне шириной в пределах 1,1-1,2 ширины испытуемой (буксируемой) модели 2 со скоростью, заданной в зависимости от скорости буксировки испытуемой модели 2 (фиг. 2). Устройство содержит измеритель солености льда и средство разрушения консольных балок с динамометром, связанным с регистрирующей аппаратурой (на рисунке не показаны), и бортовой компьютер 6, который расположен на буксировочной тележке 1 и связан с измерительным тепловизором 4.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне осуществляется с помощью предлагаемого устройства следующим образом.

Предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость по толщине и структуру, в которых затем определяют прочность льда при соответствующей солености S и средней температуре t по его толщине путем разрушения консольных балок льда на плаву, в результате чего получают данные о прочности льда σ в виде зависимости σ=f(S,t) и структуры льда для выбранного опытового бассейна.

Перед проведением модельных испытаний, перед каждым экспериментом с буксируемыми моделями 2, измеряют в ледовом опытовом бассейне среднюю соленость льда 3 и температуру приледного слоя воды, которые вводят в бортовой компьютер 6.

Затем при проведении эксперимента в процессе буксировки испытуемой модели 2 непрерывно измеряют температуру поверхности льда 3 перед моделью 2 в полосе ледового покрова в пределах зоны шириной в 1,1-1,2 ширины модели 2 на расстоянии, равном не менее восьми толщинам ледового покрова бассейна, с помощью измерительного тепловизора 4, сканирующего поверхность льда 3 в указанной полосе, совершая возвратно-поступательные движения поперек закрепленной на испытательной тележке 1 штанге 5 со скоростью, предусмотренной режимом буксировки модели 2. Полученные данные измерительного тепловизора 4 вводятся в бортовой компьютер 6, в котором непрерывно в темпе ведения эксперимента регистрируются в виде значений температуры поверхности льда в испытуемой полосе льда 3, и вычисляется средняя температура льда по его толщине в указанной полосе как среднеарифметическое между температурой поверхности льда и приледного слоя воды. Одновременно, обрабатывая бортовым компьютером 6 полученные данные о средней температуре льда по его толщине и о его средней солености с применением предварительно полученной кривой зависимости прочности льда σ=f(S,t), получают в процессе буксировки модели 2 информацию о прочности льда вдоль полосы буксировки модели 2.

Используя полученные данные о прочности льда вдоль полосы буксировки испытуемой модели 2, вводят поправки в результаты экспериментов с моделями тел 2, проводимых в ледовом опытовом бассейне.

Предлагаемый способ определения прочности льда в ледовом опытовом бассейне позволяет обеспечить оперативное, не разрушая при этом ледового покрова бассейна, определение прочности моделированного льда в темпе ведения эксперимента с буксируемыми моделями в ледовом опытовом бассейне для повышения точности и достоверности результатов модельного эксперимента, при одновременном повышении эффективности использования ледового поля для проведения в нем указанных экспериментов, что их выгодно отличает от прототипов.

Способ определения прочности льда в ледовом опытовом бассейне, включающий измерение средней солености льда и средней температуры льда по его толщине и определение прочностных свойств льда на изгиб методом разрушения консольных балок льда на плаву, отличающийся тем, что предварительно в выбранном опытовом ледовом бассейне намораживают моделированные ледяные покровы, имеющие различные среднюю температуру, среднюю соленость и структуру, в которых затем проводят эксперименты по упомянутому определению прочности льда путем разрушения консольных балок льда на плаву с измерением средней солености льда S и средней температуры t по его толщине, в результате которых получают данные о прочности льда σ в виде зависимости σ=f (S, t), и структуры льда для выбранного опытового бассейна, а перед проведением модельных испытаний перед каждым экспериментом с буксируемыми моделями измеряют в ледовом опытовом бассейне среднюю соленость льда и температуру приледного слоя воды, которые вводят в бортовой компьютер, после чего, в процессе проведения испытаний с буксируемыми моделями, в темпе ведения эксперимента определяют температуру поверхности льда непосредственно перед буксируемой моделью на расстоянии, равном не менее восьми толщинам ледового покрова опытового бассейна перед буксируемой моделью в полосе шириной в 1,1-1,2 ширины испытуемой модели с помощью измерительного тепловизора, сканирующего поверхность льда в указанной полосе, значения которой постоянно регистрируют на бортовом компьютере, который на основе полученных данных вычисляет среднюю температуру льда по формуле: где t - температура поверхности льда, t - температура приледного слоя воды, и с использованием полученных результатов измерений характеристик льда и с применением ранее полученной зависимости σ=f (S, t), после обработки на компьютере, получают в процессе буксировки модели информацию о прочности льда вдоль полосы буксировки.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ЛЬДА В ЛЕДОВОМ ОПЫТОВОМ БАССЕЙНЕ
Источник поступления информации: Роспатент

Showing 1-10 of 401 items.
10.01.2013
№216.012.1799

Воздухоочистительное устройство для судовых энергетических установок

Изобретение относится к области судостроения, в частности к системам очистки воздуха, подаваемого в двигатель для горения топлива, преимущественно газотурбинным, для которых требования по содержанию воды и соли, например морской, являются наиболее жесткими. Воздухоочистительное устройство...
Тип: Изобретение
Номер охранного документа: 0002471533
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.17ac

Катализатор для получения сверхвысокомолекулярного полиэтилена

Изобретение относится к катализатору для получения сверхвысокомолекулярного полиэтилена. Описан катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ при повышенных температурах полимеризации (≥80°C) в среде углеводородного разбавителя, например гептан, гексан, изопентан,...
Тип: Изобретение
Номер охранного документа: 0002471552
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.190e

Способ получения хлопчатобумажной ткани технического назначения с комплексом защитных свойств от кислот и нефтепродуктов

Изобретение относится к текстильной промышленности, в частности к отделке хлопчатобумажных текстильных материалов с комплексом защитных свойств от кислот и нефтепродуктов. Способ получения хлопчатобумажной ткани технического назначения включает расшлихтовку, отварку, беление, крашение активными...
Тип: Изобретение
Номер охранного документа: 0002471906
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1bc8

Координатный стол

Изобретение относится к области машиностроения, а именно к высокоточным координатным устройствам на линейных электродвигателях. Координатный стол содержит модули продольного и поперечного перемещения. Каждый из них выполнен в виде основания с направляющими, каретки, размещенной на направляющих,...
Тип: Изобретение
Номер охранного документа: 0002472606
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1bce

Стенд для контроля точности контурных перемещений промышленного робота

Изобретение относится к измерительной технике и может быть использовано для проверки параметров контурного движения роботов, таких как точность, повторяемость, вибрация. Стенд для контроля точности контурных перемещений промышленного робота, содержащего манипулятор 1 с закрепленным на фланце 6...
Тип: Изобретение
Номер охранного документа: 0002472612
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ca8

Эпоксиполиэфирная лакокрасочная композиция

Изобретение предназначается для нанесения на рулонный металл в качестве лакокрасочного материала. Эпоксиполиэфирная лакокрасочная композиция содержит (мас.%.): эпоксидную диановую смолу с эпоксидным эквивалентным весом 1550-4000 г/экв. 18,0-40,0, полиэфирную смолу на основе продукта...
Тип: Изобретение
Номер охранного документа: 0002472830
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1e17

Способ сбора штормовых выбросов морских водорослей

Изобретение относится к промышленному сбору штормовых выбросов морских водорослей и может быть использовано для прибрежного промысла и в прибойной полосе. Способ сбора штормовых выбросов морских водорослей включает переход мореходного средства на место сбора выбросов, подбор водорослей и...
Тип: Изобретение
Номер охранного документа: 0002473204
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e2

Устройство для преобразования изменения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью одиночных тензорезисторов без применения компенсационных тензорезисторов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002473919
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.214b

Устройство для защиты емкостного накопителя энергии

Изобретение относится к области высоковольтной импульсной техники. Технический результат заключается в повышении надежности устройства путем уменьшения вероятности взрыва конденсаторов в динамическом режиме работы устройства. Устройство содержит зарядное устройство, n параллельно соединенных...
Тип: Изобретение
Номер охранного документа: 0002474024
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.230b

Катализатор, способ его приготовления и способ получения β-пиколина

Изобретение относится к катализаторам получения β-пиколина конденсацией акролеина с аммиаком и способам их получения с целью повышения выхода β-пиколина, применяемого в производстве никотиновой кислоты и никотинамида, являющихся составными частями жизненно важных витамина РР и витаминов группы...
Тип: Изобретение
Номер охранного документа: 0002474473
Дата охранного документа: 10.02.2013
Showing 1-10 of 341 items.
10.01.2013
№216.012.1799

Воздухоочистительное устройство для судовых энергетических установок

Изобретение относится к области судостроения, в частности к системам очистки воздуха, подаваемого в двигатель для горения топлива, преимущественно газотурбинным, для которых требования по содержанию воды и соли, например морской, являются наиболее жесткими. Воздухоочистительное устройство...
Тип: Изобретение
Номер охранного документа: 0002471533
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.17ac

Катализатор для получения сверхвысокомолекулярного полиэтилена

Изобретение относится к катализатору для получения сверхвысокомолекулярного полиэтилена. Описан катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ при повышенных температурах полимеризации (≥80°C) в среде углеводородного разбавителя, например гептан, гексан, изопентан,...
Тип: Изобретение
Номер охранного документа: 0002471552
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.190e

Способ получения хлопчатобумажной ткани технического назначения с комплексом защитных свойств от кислот и нефтепродуктов

Изобретение относится к текстильной промышленности, в частности к отделке хлопчатобумажных текстильных материалов с комплексом защитных свойств от кислот и нефтепродуктов. Способ получения хлопчатобумажной ткани технического назначения включает расшлихтовку, отварку, беление, крашение активными...
Тип: Изобретение
Номер охранного документа: 0002471906
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1bc8

Координатный стол

Изобретение относится к области машиностроения, а именно к высокоточным координатным устройствам на линейных электродвигателях. Координатный стол содержит модули продольного и поперечного перемещения. Каждый из них выполнен в виде основания с направляющими, каретки, размещенной на направляющих,...
Тип: Изобретение
Номер охранного документа: 0002472606
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1bce

Стенд для контроля точности контурных перемещений промышленного робота

Изобретение относится к измерительной технике и может быть использовано для проверки параметров контурного движения роботов, таких как точность, повторяемость, вибрация. Стенд для контроля точности контурных перемещений промышленного робота, содержащего манипулятор 1 с закрепленным на фланце 6...
Тип: Изобретение
Номер охранного документа: 0002472612
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ca8

Эпоксиполиэфирная лакокрасочная композиция

Изобретение предназначается для нанесения на рулонный металл в качестве лакокрасочного материала. Эпоксиполиэфирная лакокрасочная композиция содержит (мас.%.): эпоксидную диановую смолу с эпоксидным эквивалентным весом 1550-4000 г/экв. 18,0-40,0, полиэфирную смолу на основе продукта...
Тип: Изобретение
Номер охранного документа: 0002472830
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1e17

Способ сбора штормовых выбросов морских водорослей

Изобретение относится к промышленному сбору штормовых выбросов морских водорослей и может быть использовано для прибрежного промысла и в прибойной полосе. Способ сбора штормовых выбросов морских водорослей включает переход мореходного средства на место сбора выбросов, подбор водорослей и...
Тип: Изобретение
Номер охранного документа: 0002473204
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.1f95

Фотохромная регистрирующая среда для трехмерной оптической памяти

Изобретение относится к фотохромным полимерным регистрирующим средам на основе нового семейства термически необратимых диарилэтенов, а именно арил-замещенных циклопентеновых бензтиенил производных диарилэтенов, для использования в многослойных оптических дисках нового поколения с информационной...
Тип: Изобретение
Номер охранного документа: 0002473586
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e2

Устройство для преобразования изменения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью одиночных тензорезисторов без применения компенсационных тензорезисторов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002473919
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.214b

Устройство для защиты емкостного накопителя энергии

Изобретение относится к области высоковольтной импульсной техники. Технический результат заключается в повышении надежности устройства путем уменьшения вероятности взрыва конденсаторов в динамическом режиме работы устройства. Устройство содержит зарядное устройство, n параллельно соединенных...
Тип: Изобретение
Номер охранного документа: 0002474024
Дата охранного документа: 27.01.2013
+ добавить свой РИД