×
10.11.2015
216.013.8f12

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН). Начальная ориентация КО определяется по номинальной ориентации РН в момент отделения. После включения, через время Δt, датчиков системы управления КО получают данные о текущей угловой скорости КО. Используя модель углового движения КО (на основе уравнений Эйлера) оценивают (обратным интегрированием) угловую скорость КО в момент отделения от РН. Далее по полученным начальным условиям на основе указанной модели углового движения определяют (прямым интегрированием) параметры текущей ориентации КО. Прикладывают к КО серию импульсов, величину которых определяют по разнице между текущей и требуемой ориентациями КО. Техническим результатом изобретения является сокращение продолжительности построения ориентации после отделения КО от РН независимо от светотеневых условий на орбите. 6 ил.
Основные результаты: Способ управления движением космического объекта после его расстыковки с другим космическим объектом, включающий выполнение серии импульсов для его разворота в требуемую ориентацию через время Δt, соответствующее моменту начала измерений угловой скорости космического объекта, отличающийся тем, что предварительно определяют угол разворота космического объекта из текущей ориентации в требуемую ориентацию по текущим угловым скоростям космического объекта, значению Δt и по известному угловому положению другого космического объекта в момент расстыковки, после чего прикладывают серию импульсов, величину которых определяют по разнице между текущей и требуемой ориентациями.

Предлагаемый способ может быть использован в космической технике при управлении движением космического объекта (КО), например пилотируемого космического корабля (ПКК), после его отделения в заданном направлении от другого космического объекта (ДКО), например ракетоносителя (РН), выводящего ПКК на опорную орбиту.

Известен способ управления движением КО, в котором для построения ориентации сразу после отделения от РН используются данные с датчиков углов поворота гиростабилизированной платформы (ГСП), которая на старте имела определенное известное положение (Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. - М.: Наука, 1974), выбранный в качестве аналога (фиг. 1). Далее на основе информации о повороте ГСП определяется кватернион разворота КО относительно его известной начальной ориентации по формуле:

,

где φ, ψ, θ - угловые рассогласования между текущим и начальным положением ГСП (φ0, ψ0, θ0) в каналах, тангажа, рысканья и крена соответственно. После определения угловых рассогласований между текущим и требуемым угловым положением к КО прикладывается серия импульсов для осуществления разворота в требуемую угловую ориентацию.

Основным недостатком этого способа является то, что ГСП значительно превосходит по массе бесплатформенные навигационные системы и по этой причине не может быть использована на многих КО. При использовании ГСП необходимо учитывать ограничения по углам поворота карданового подвеса ГСП, что приводит к дополнительному расходу топлива для обхода запрещенных зон при разворотах. Также при использовании ГСП невозможно продолжительное, в течение нескольких часов, управление по данным датчиков углов ГСП ввиду уходов направления кинетического момента гироскопа от начального направления. Кроме того, крайне нежелательно включение датчиков управления до старта, так как на участке выведения возможно их разрушение вследствие значительных перегрузок.

Известен способ управления движением КО после его отделения от другого КО, выбранный в качестве прототипа, в котором для определения ориентации используется датчик инфракрасной вертикали (ИКВ) (Легостаев В.П., Микрин Е.А., Орловский И.В., Борисенко Ю.Н., Платонов В.Н., Евдокимов С.Н. Создание и развитие систем управления движением космических кораблей «Союз» и «Прогресс»: опыт эксплуатации, планируемая модернизация // Сборник статей. Москва, МФТИ, 2009.) (фиг. 2). В этом способе после поступления первых измерений угловой скорости через время Δt к КО прикладывают серию импульсов, совершающих ряд последовательных разворотов для обеспечения нахождения диска Земли в поле зрения датчика ИКВ. Затем, уже по показаниям датчика ИКВ, к КО прикладывают серию импульсов, совмещающих видимый центр Земли с центром обзора датчика ИКВ. Далее, по изменению компонент угловой скорости в плоскости, перпендикулярной направлению на центр Земли, определяют текущее направление орбитальной угловой скорости и, соответственно, орбитальную систему координат (ОСК), описанную в Аппазов Р.Ф., Сытин О.Г. «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987, после чего прикладывают серию импульсов для разворота КО в требуемую ориентацию.

Основными недостатками этого способа управления движением являются требование обеспечения определенных светотеневых условий на орбите и продолжительное (7-10 минут) время, затрачиваемое на поиск Земли.

Техническим результатом изобретения является сокращение продолжительности построения ориентации после отделения от ДКО независимо от светотеневых условий на орбите.

Технический результат достигается тем, что в способе управления движением КО после отделения от ДКО, включающем выполнение серии импульсов для его разворота в требуемую ориентацию через время Δt, соответствующее моменту начала измерений угловой скорости КО, в отличие от прототипа предварительно определяют угол разворота КО из текущей ориентации в требуемую ориентацию по текущим угловым скоростям КО, значению Δt и по известному угловому положению ДКО в момент расстыковки, после чего прикладывают серию импульсов, величину которых определяют по разнице между текущей и требуемой ориентацией.

Технический результат в предлагаемом способе управления движением достигается тем, что для построения ориентации КО в качестве исходной информации используются номинальные параметры его отделения от РН. Максимальные ошибки фактической ориентации РН по сравнению с номинальной в момент разделения составляют 0.06% и ими можно пренебречь. Ввиду того что датчики угловых скоростей включаются с некоторой задержкой после разделения, информация об угловой скорости на момент разделения отсутствует. Однако после получения информации с датчиков угловых скоростей измеряется время Δt, прошедшее с момента разделения, и по измерениям текущей угловой скорости w и Δt определяется значения угловой скорости w0 на момент разделения. Далее, с помощью угловых скоростей w и w0 и известных данных об угловом положении РН на момент отделения ПКК определяют текущую ориентацию КО. После определения текущей ориентации производят разворот КО в требуемую ориентацию.

Сущность изобретения поясняется фиг. 1-6, где на фиг.1 представлен способ управления движением по показаниям ГСП,

на фиг. 2 представлен способ управления движением при помощи ИКВ,

на фиг. 3 представлена циклограмма управления движением по предлагаемому способу,

на фиг. 4 представлены графики изменения угловой скорости и углового рассогласования от времени при определении начального углового положения по предлагаемому способу,

на фиг. 5 приведены графические результаты статистического моделирования определения начального углового рассогласования от ОСК для каждого канала измерений по предлагаемому способу,

на фиг. 6 приведены графические результаты статистического моделирования определения начального углового рассогласования от ОСК суммарно по всем каналам измерений.

Фиг. 1 представляет управление движением при построении ОСК с помощью ГСП, которая на старте имела определенное известное положение (поз. 1). Далее на основе информации о повороте ГСП (поз. 2) определяется кватернион разворота КО относительно его известной начальной ориентации где φ, ψ, θ - угловые рассогласования между текущим и начальным положением ГСП (φ0, ψ0, θ0) в каналах тангажа, рысканья и крена соответственно.

Фиг. 2 демонстрирует управление движением в процессе построения ОСК при помощи ИКВ. Вначале КО совершает ряд разворотов для обеспечения нахождения диска Земли в поле зрения датчика ИКВ (поз. 3). Затем по показаниям датчика ИКВ (поз. 4) строится местная вертикаль (поз. 5) за счет приведения с помощью двигателей КО видимого центра Земли в центр обзора датчика ИКВ (поз. 6). По изменению компонент угловой скорости в плоскости, перпендикулярной направлению на центр Земли, определяется текущее направление орбитальной угловой скорости, после чего осуществляется разворот КО вокруг местной вертикали (поз. 7) в ОСК (поз. 8).

На фиг. 3 представлена циклограмма управления движением по предлагаемому способу. После отделения от РН в момент Т0 КО находится в свободном, неуправляемом движении в течение времени Δt. За это время происходит подготовка двигательной установки, раскрытие элементов конструкции, включение и тестирование бортового оборудования, необходимого для осуществления автономного полета. В момент времени ТСБ1 начинается процесс раскрытия панелей солнечных батарей, который завершается в момент времени ТСБ2. В момент времени T0+Δt завершается раскрутка гироскопов датчиков угловой скорости и их измерения начинают поступать в бортовой компьютер.

На фиг. 4 представлены результаты моделирования процесса определения начальной ориентации. Фиг. 4 демонстрирует процесс восстановления угловой скорости и углов рассогласования от ОСК на всем интервале неуправляемого движения. Поз. 9 представляет изменение реальной угловой скорости и углового рассогласования, полученных из модели динамики углового движения, а поз. 10 представляет изменение их бортовых значений. Незначительное отличие реальной ориентации (поз. 9) от восстановленного значения (поз. 10) по предлагаемому способу появляется из-за дополнительного неучтенного влияния на угловое движение процесса раскрытия солнечных батарей, которое не вносит существенной ошибки при построении необходимой ориентации.

На фиг. 5 показаны точности определения начальной ориентации КО по каналу тангажа (поз. 11), рыскания (поз. 12) и крена (поз. 13).

На фиг. 6 представлено поведение суммарной ошибки оценки ориентации (поз. 14), полученной с использованием данных, представленных на фиг. 5.

Значение начальной ориентации определяется с использованием номинального знания ориентации ДКО в момент отделения КО. После включения датчиков системы управления движением КО через время Δt после отделения Т0 становятся доступны данные об угловой скорости КО. Основной сущностью изобретения является то, что используя модель динамики углового движения КО, описываемую в виде динамических уравнений Эйлера при их обратном интегрировании, можно оценить угловую скорость КО в момент отделения от РН. Далее, используя номинальные данные о начальной ориентации КО, совпадающей в момент отделения с известной ориентацией ДКО, с учетом определенного значения начальной угловой скорости, можно вычислить ориентацию КО на момент времени, соответствующий включению системы управления движением. Таким образом, задача сводится к решению граничной задачи для нелинейной системы дифференциальных уравнений седьмого порядка (1). Граничные условия этой задачи представляют собой известное угловое положение ДКО в кватернионной форме ΛОтд. в начальный момент времени на одной границе и вектор угловой скорости КО ω0 в конечный момент времени (2).

здесь J - матрица тензора инерции КО, ω - угловая скорость КО, Λ - кватернион ориентации КО.

Хотя возмущения от воздействия гравитационного и аэродинамического моментов, изменение моментов инерции КО, вызванное раскрытием солнечных батарей, а также точность знания начальной ориентации РН незначительно снизит точность определения начального углового положения, тем не менее полученной точности вполне достаточно для разворота КО в ОСК и датчик ИКВ будет направлен в сторону центра Земли без проведения серии последовательных разворотов КО для поиска диска Земли.

Задача (1)-(2) решается путем численного интегрирования методом Эйлера 1-го порядка с шагом τ=0.2 с. В процессе интегрирования используется матрица тензора инерции для аппарата с раскрытыми солнечными батареями. На небольшом начальном временном интервале измерения угловой скорости КО усредняются для снижения погрешности от шумов датчика угловой скорости. На следующем шаге уравнения Эйлера интегрируются в обратном времени по формуле:

После получения значения угловой скорости на момент разделения, численным интегрированием дифференциальных уравнений (1) находится значение кватерниона рассогласования на текущий момент времени. Интегрирование (1) осуществляется методом Эйлера с коррекцией нормы кватерниона |Λn| по формулам (Бранец В.Н., Шмыглевский И.П. Введение в теорию бесплатформенных инерциальных навигационных систем. - М.: Наука, 1992.):

После определения текущей ориентации КО прикладывают серию импульсов, величину которых определяют по разнице между текущей и требуемой ориентацией.

Результаты статистического моделирования, приведенные на фиг. 5, и фиг. 6 показывают, что средние значения ошибок определения ориентации по каналам X, Y, Z составляют соответственно 2°, -1.7°, -3.2°, а суммарная ошибка оценки углового рассогласования не превышает 5°.

Способ управления движением космического объекта после его расстыковки с другим космическим объектом, включающий выполнение серии импульсов для его разворота в требуемую ориентацию через время Δt, соответствующее моменту начала измерений угловой скорости космического объекта, отличающийся тем, что предварительно определяют угол разворота космического объекта из текущей ориентации в требуемую ориентацию по текущим угловым скоростям космического объекта, значению Δt и по известному угловому положению другого космического объекта в момент расстыковки, после чего прикладывают серию импульсов, величину которых определяют по разнице между текущей и требуемой ориентациями.
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ КОСМИЧЕСКОГО ОБЪЕКТА ПОСЛЕ ОТДЕЛЕНИЯ ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Showing 251-260 of 370 items.
25.08.2017
№217.015.b737

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, неподвижно закрепленные на корпусе подшипниковый щит и плату с электродвигателем с шестерней на его валу, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002614462
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
Showing 251-260 of 297 items.
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b700

Космический модуль

Изобретение относится преимущественно к космическим аппаратам (КА) с малыми космическими модулями (КМ) для оптико-электронного наблюдения Земли. КМ включает в себя призматический силовой корпус блочного типа. На торцевой панели установлена одноразовая (для гашения остаточной угловой скорости КА...
Тип: Изобретение
Номер охранного документа: 0002614461
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b71b

Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА. В момент отказа измерителя угловой скорости КА фиксируют суммарный вектор кинетич. момента КА и...
Тип: Изобретение
Номер охранного документа: 0002614467
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b737

Электропривод

Изобретение относится к машиностроению и может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Электропривод содержит корпус, неподвижно закрепленные на корпусе подшипниковый щит и плату с электродвигателем с шестерней на его валу, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002614462
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b775

Камера сгорания жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В камере сгорания жидкостного ракетного двигателя, содержащей наружную стальную оболочку и внутреннюю оболочку из медного сплава с размещенными в ней каналами охлаждающего тракта с турбулизирующими выступающими элементами на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002614902
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.ba56

Устройство укладки гибкого протяженного по длине элемента в космических условиях и способ его эксплуатации

Изобретение относится к космической технике, в частности к оборудованию по обеспечению работ в космических условиях, а также может быть использовано в наземных условиях и при проведении подводно-технических работ. Предлагается устройство, содержащее несущую структуру в виде двух пластин (1),...
Тип: Изобретение
Номер охранного документа: 0002615466
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
+ добавить свой РИД