×
27.10.2015
216.013.88e8

Результат интеллектуальной деятельности: СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)

Вид РИД

Изобретение

№ охранного документа
0002566651
Дата охранного документа
27.10.2015
Аннотация: Использование: для измерения содержания воды на основе ядерного магнитного резонанса. Сущность изобретения заключается в том, что подвергают образец действию магнитного поля постоянного тока, образец под действием магнитного поля постоянного тока подвергают действию последовательности импульсов возбуждения на радиочастоте с интервалом между импульсами для возбуждения ядер водорода, и измеряют ЯМР-сигнал возбужденных ядер водорода, при этом оценивают время спин-решеточной релаксации для каждого образца на основе отклика на последовательность импульсов возбуждения, и регулируют интервал между импульсами как минимальный при поддержании интервала между импульсами, превышающим оцененное время спин-решеточной релаксации. Технический результат: обеспечение возможности оптимизации частоты повторения импульсов для различных уровней влажности образца. 2 н. и 17 з.п. ф-лы, 4 ил.

Область техники

Изобретение относится к способу адаптивного изменения интервала между импульсами при измерении содержания воды на основе ЯМР согласно преамбуле пункта 1 формулы изобретения.

Изобретение также относится к установке адаптивного регулирования интервала между импульсами при измерении содержания воды на основе ЯМР.

Предшествующий уровень техники

ЯМР-технология (ядерный магнитный резонанс) используется для определения влагосодержания материалов. Например, FR 2786567 описывает этот тип системы. Настоящие системы являются громоздкими и дорогими, и, следовательно, редко используются в коммерческих вариантах применения.

Задача настоящего изобретения заключается в том, чтобы предоставлять новый тип измерения содержания воды на основе ЯМР, выполненного с возможностью преодоления, по меньшей мере, некоторых проблем технологии предшествующего уровня техники, описанной выше.

Краткое изложение сущности изобретения

Изобретение основано на принципе использования таких последовательностей импульсов, в которых частота повторения импульсов оптимизируется для различных уровней влажности образца, который должен быть измерен. Упомянутая оптимизация преимущественно основана на оценке так называемой постоянной времени спин-решеточной релаксации.

Кроме того, также измерительное оборудование отличается использованием низкоэнергетического магнитного поля и взвешивающей установки.

Более конкретно, способ согласно изобретению отличается тем, что формулируется в отличительной части по п.1.

Кроме того, установка согласно изобретению отличается тем, что формулируется в отличительной части по п.11.

Изобретение предлагает значительные преимущества.

Во-первых, время измерения может быть минимизировано для всех влажностей и образцов материалов.

Во-вторых, измерительное оборудование является легким и недорогим без негативного влияния на точность измерения.

Краткое описание чертежей

Далее изобретение подробно рассматривается с помощью примерных вариантов осуществления, изображенных на прилагаемых чертежах, на которых:

Фиг. 1 схематично представляет базовую концепцию оборудования для ЯМР-измерения влажности, подходящего для изобретения.

Фиг. 2 графически представляет типичные ЯМР-сигналы с временами релаксации.

Фиг. 3 представляет типичную последовательность импульсов в соответствии с изобретением.

Фиг. 4 графически изображает пример влияния интервала между импульсами на сумму амплитуды большого числа импульсов.

Описание предпочтительного варианта воплощения

В соответствии с фиг. 1, при ЯМР-измерении влажности однородное магнитное поле постоянного тока формируется посредством магнита 2 в образце 1, который должен быть измерен, в таком случае взаимодействие магнитного поля с водородом в образце 1 приводит к возникновению небольшого намагничивания в образце 1. Затем, образец 1 подвергается короткому интенсивному радиочастотному импульсу 3 возбуждения (фиг. 2 и 3) посредством приемо-передающего устройства 5, который возбуждает ядра водорода. На следующем этапе измерительный инструмент 5 записывает ЯМР-сигнал (известный как свободное индуктивное затухание, или FID) за период порядка нескольких миллисекунд. В течение этого времени, некоторые части образца подвергаются ЯМР-релаксации и возвращаются в исходное состояние. Амплитуда 10 сигнала (фиг. 2) в предварительно определенное время (десятки микросекунд после первого радиочастотного импульса) является пропорциональной общему объему водорода из влаги образцов. Следовательно, максимальное значение ЯМР-сигнала определяет влагосодержание. На практике это максимальное значение 10 зачастую экстраполируется из измерения, выполняемого через некоторое время после действительного максимума 10.

Инструмент на основе ядерного магнитного резонанса может легко быть сконфигурирован с возможностью давать в результате электрический сигнал, который является пропорциональным содержанию водорода, содержащему жидкости в твердом материале. ЯМР - устройство, в частности, хорошо подходит для измерения содержания воды в биомассе. Когда образец, который должен измеряться, является очень сухим, что типично означает то, что содержание воды меньше 20 масс%, отношение "сигнал-шум" является низким, что типично компенсируется посредством увеличения числа последовательных измерений и их усреднения. Это естественным образом приводит к большому времени измерения. Ограничение на время между последовательными измерениями главным образом задается посредством так называемого времени спин-решеточной релаксации (далее называется T1). Оно представляет собой время, требуемое для того, чтобы вектор отклоненной средней намагниченности восстанавливал свое первоначальное значение. Восстановление обеспечивается посредством рассеяния энергии из протонов в решетку. Если импульс возбуждения применяется до полной релаксации, наблюдается уменьшенная амплитуда сигнала, и изменяется коэффициент корреляции между содержанием воды и амплитудой сигнала, и тем самым калибровка не является допустимой.

T1 по существу представляет собой функцию взаимодействия между ядерным спином и решеткой. В общем, чем более сухой материал, тем меньше соответствующее T1. Это явление может быть использовано при оптимизации интервала между импульсами, что означает то, что отношение "сигнал-шум" для сухих образцов может быть значительно повышено для заданного полного времени измерения.

T1 представляет собой время, которое требуется для того, чтобы ядерное намагничивание восстанавливало приблизительно 63%[1-(1/e)] от начального значения после переворота в поперечную магнитную плоскость. Различные материалы имеют различные значения T1. Например, текучие среды имеют большое T1 (1500-2000 мс), и материалы на водной основе имеют диапазон в 400-1200 мс.

В соответствии с фиг. 2, T2 характеризует скорость, с которой компонент Mxy вектора намагниченности затухает в поперечной магнитной плоскости. Оно представляет собой время, которое требуется для того, чтобы поперечное намагничивание достигало 37% (1/e) от начальной абсолютной величины после переворота в поперечную магнитную плоскость. Следовательно, соотношение:

Затухание T2 типично происходит в 5-10 раз быстрее восстановления T1, и различные виды материалов имеют различные T2. Например, текучие среды имеют самые длинные T2 (700-1200 мс), а материалы на водной основе имеют диапазон в 40-200 мс.

Способ типично состоит из двух этапов:

1. Оценка времени T1 для образца.

Она может проводиться в соответствии с фиг. 2 и 3, например, посредством измерения амплитуды 10 сигнала отклика с использованием следующих друг за другом последовательностей 2 импульсов возбуждения с постоянным числом импульсов 3 и пошагового увеличения интервала T3 между импульсами и определения минимального интервала T3, требуемого для того, чтобы сигнал отклика оставался на постоянном (максимальном) уровне 10. Как указано выше, максимальное значение 10 может быть определено посредством экстраполяции из задержанного измерения. Оценка T1 может выполняться за несколько секунд.

Другой способ оценки T1 заключается в том, чтобы измерять время T2 спин-спиновой релаксации и оценивать T1 по T2. Типично оба из них снижаются, когда снижается содержание воды в образце. Фактически T2 обычно оценивается на основе измеренного значения T2*, которое является комбинированным результатом спин-спиновых релаксаций и эффекта декогерентности, вызываемого неоднородностью первичного магнитного поля, являющегося конкретным для устройства. Третий способ оценки T1 содержит использование двух следующих друг за другом последовательностей импульсов возбуждения, каждой из которых предшествует так называемая последовательность импульсов насыщения. Интервал между импульсами в упомянутых последовательностях импульсов возбуждения преимущественно превышает T2*, но предпочтительно немного меньше T1. Две следующих друг за другом последовательности импульсов возбуждения должны иметь различные интервалы t1 и t2 между импульсами, например, t1=T1 и t2=(2*T1). Отношение амплитуд сигналов A1/A2, полученное с интервалом t1 и t2 между импульсами, соответственно, может быть вычислено из следующего уравнения:

,

которое может численно решаться для T1.

Еще одно другое средство оценки T1 состоит в том, чтобы использовать амплитуду сигнала в воде на единицу массы образца: чем меньше упомянутое отношение (чем более сухой образец), тем меньше T1. Этот способ оценки является допустимым только для ограниченного диапазона образцов, например, для твердых видов биотоплива.

Еще один другой способ оценки T1 содержит использование двух следующих друг за другом последовательностей импульсов возбуждения, каждой из которых необязательно предшествует так называемая последовательность импульсов насыщения.

Без последовательностей импульсов насыщения оценка T1 может численно вычисляться из уравнения:

Способы, описанные выше, являются только примерами возможных средств оценки T1.

2. Выполнение фактического измерения с использованием минимального интервала между импульсами, который дает в результате постоянную (максимальную) амплитуду с достаточной, например, 1%-ной точностью.

Типично, такой минимальный интервал T3 между импульсами составляет 5*T1. Таким образом, число усредненных импульсов в пределах периода времени измерения в 20 с может быть увеличено приблизительно с 10 (длинный интервал между импульсами, требуемый для влажных образцов) до приблизительно 200 (короткий интервал между импульсами, предоставляемый для очень сухих образцов), тем самым повышая “сигнал-шум” на коэффициент √(200/10)=4,5.

Низкое ЯМР-отношение "сигнал-шум", типично полученное из сухих образцов, может повышаться посредством более короткого интервала измерений и в силу этого большего числа отдельных измерений. Оптимальный интервал между импульсами определяется с использованием последовательности зондирующих импульсов для того, чтобы оценивать постоянную T1 времени спин-решеточной релаксации, которая преимущественно может быть использована в качестве ввода для вычисления нижнего предела для интервала между импульсами. Раскрытый способ позволяет повышать отношение "сигнал-шум" очень сухих образцов на коэффициент пять.

Как видно из фиг. 4, образец со средним влагосодержанием может измеряться с более коротким интервалом между импульсами, чем влажный образец.


СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
СПОСОБ И УСТАНОВКА АДАПТИВНОГО ИЗМЕНЕНИЯ ИНТЕРВАЛА МЕЖДУ ИМПУЛЬСАМИ ПРИ ИЗМЕРЕНИИ СОДЕРЖАНИЯ ВОДЫ НА ОСНОВЕ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР)
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
20.12.2013
№216.012.8ec1

Управление энергопотреблением в беспроводных системах связи

Изобретение относится к технике связи и может быть использовано для установления беспроводной линии связи в беспроводных сетевых окружениях, имеющих периоды передачи сигнала маяка с различной частотой. Способ беспроводной связи заключается в определении в устройстве, которое находится в...
Тип: Изобретение
Номер охранного документа: 0002502228
Дата охранного документа: 20.12.2013
10.05.2014
№216.012.c286

Способ и устройство для участия в услуге или действии с использованием одноранговой ячеистой сети

Изобретение относится к способам и устройствам для участия в услуге или действии с использованием одноранговой ячеистой сети. Технический результат заключается в минимизировании трафика данных, транспортируемых по одноранговой ячеистой сети, устранении проблем, связанных с поддержанием и...
Тип: Изобретение
Номер охранного документа: 0002515547
Дата охранного документа: 10.05.2014
27.07.2014
№216.012.e342

Обнаружение сети в беспроводных системах связи

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении обнаружения сети. Способ беспроводной связи содержит: идентификацию возможности сканирования для устройства связи, причем возможность сканирования основана на интервале передачи сигнала сетевого маяка;...
Тип: Изобретение
Номер охранного документа: 0002523968
Дата охранного документа: 27.07.2014
27.01.2016
№216.014.bc9f

Устройство ядерного магнитного резонанса низкого поля для измерения содержания воды в твердых веществах и суспензиях

Использование: для измерения содержания воды в твердых веществах и суспензиях посредством ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство содержит средство для создания постоянного магнитного поля, емкость для вмещения образца в пределах упомянутого...
Тип: Изобретение
Номер охранного документа: 0002573710
Дата охранного документа: 27.01.2016
27.04.2016
№216.015.37bf

Электромагнит для измерений ядерного магнитного резонанса в слабом поле и способ для его изготовления

Изобретение относится к электромагнитам для измерения ядерного магнитного резонанса в слабом поле, в частности для определения воды в образце. Технический результат состоит в повышении однородности магнитного поля в измеряемом объеме при уменьшении габаритов. Электромагнит содержит ярмо (1),...
Тип: Изобретение
Номер охранного документа: 0002582582
Дата охранного документа: 27.04.2016
20.01.2018
№218.016.0eec

Способ нагнетания жидкой среды, центробежный насос и его рабочее колесо

Группа изобретений относится к рабочему колесу и центробежному насосу, использующему таковое. Рабочее колесо содержит по меньшей мере ступицу (52), продолжающуюся радиально наружу в виде диска (54), по меньшей мере одну рабочую лопатку (56), расположенную на передней поверхности ступицы (52) и...
Тип: Изобретение
Номер охранного документа: 0002633211
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.16b4

Рабочее колесо для центробежного насоса

Изобретение относится к центробежному насосу для перекачивания волокнистой суспензии. Рабочее колесо насоса содержит ступицу (34) по меньшей мере с одной цельной и жесткой рабочей лопаткой (38) и по меньшей мере с одной цельной и жесткой задней лопаткой (40). По меньшей мере одна рабочая...
Тип: Изобретение
Номер охранного документа: 0002635739
Дата охранного документа: 15.11.2017
Showing 1-9 of 9 items.
20.12.2013
№216.012.8ec1

Управление энергопотреблением в беспроводных системах связи

Изобретение относится к технике связи и может быть использовано для установления беспроводной линии связи в беспроводных сетевых окружениях, имеющих периоды передачи сигнала маяка с различной частотой. Способ беспроводной связи заключается в определении в устройстве, которое находится в...
Тип: Изобретение
Номер охранного документа: 0002502228
Дата охранного документа: 20.12.2013
10.05.2014
№216.012.c286

Способ и устройство для участия в услуге или действии с использованием одноранговой ячеистой сети

Изобретение относится к способам и устройствам для участия в услуге или действии с использованием одноранговой ячеистой сети. Технический результат заключается в минимизировании трафика данных, транспортируемых по одноранговой ячеистой сети, устранении проблем, связанных с поддержанием и...
Тип: Изобретение
Номер охранного документа: 0002515547
Дата охранного документа: 10.05.2014
27.07.2014
№216.012.e342

Обнаружение сети в беспроводных системах связи

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении обнаружения сети. Способ беспроводной связи содержит: идентификацию возможности сканирования для устройства связи, причем возможность сканирования основана на интервале передачи сигнала сетевого маяка;...
Тип: Изобретение
Номер охранного документа: 0002523968
Дата охранного документа: 27.07.2014
27.01.2016
№216.014.bc9f

Устройство ядерного магнитного резонанса низкого поля для измерения содержания воды в твердых веществах и суспензиях

Использование: для измерения содержания воды в твердых веществах и суспензиях посредством ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство содержит средство для создания постоянного магнитного поля, емкость для вмещения образца в пределах упомянутого...
Тип: Изобретение
Номер охранного документа: 0002573710
Дата охранного документа: 27.01.2016
27.04.2016
№216.015.37bf

Электромагнит для измерений ядерного магнитного резонанса в слабом поле и способ для его изготовления

Изобретение относится к электромагнитам для измерения ядерного магнитного резонанса в слабом поле, в частности для определения воды в образце. Технический результат состоит в повышении однородности магнитного поля в измеряемом объеме при уменьшении габаритов. Электромагнит содержит ярмо (1),...
Тип: Изобретение
Номер охранного документа: 0002582582
Дата охранного документа: 27.04.2016
20.01.2018
№218.016.0eec

Способ нагнетания жидкой среды, центробежный насос и его рабочее колесо

Группа изобретений относится к рабочему колесу и центробежному насосу, использующему таковое. Рабочее колесо содержит по меньшей мере ступицу (52), продолжающуюся радиально наружу в виде диска (54), по меньшей мере одну рабочую лопатку (56), расположенную на передней поверхности ступицы (52) и...
Тип: Изобретение
Номер охранного документа: 0002633211
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.16b4

Рабочее колесо для центробежного насоса

Изобретение относится к центробежному насосу для перекачивания волокнистой суспензии. Рабочее колесо насоса содержит ступицу (34) по меньшей мере с одной цельной и жесткой рабочей лопаткой (38) и по меньшей мере с одной цельной и жесткой задней лопаткой (40). По меньшей мере одна рабочая...
Тип: Изобретение
Номер охранного документа: 0002635739
Дата охранного документа: 15.11.2017
18.01.2019
№219.016.b168

Конфигурация подводящего канала для корпуса улитки центробежного насоса, фланцевый элемент, корпус улитки для центробежного насоса и центробежный насос

Группа изобретений относится к подводящему каналу (12) для корпуса улитки центробежного насоса. Канал (12) содержит первый конец (54) c первым внутренним диаметром D1 и второй конец (58) со вторым внутренним диаметром D2. Диаметр D2 меньше, чем диаметр D2. Между первым концом (54) и вторым...
Тип: Изобретение
Номер охранного документа: 0002677308
Дата охранного документа: 16.01.2019
20.05.2019
№219.017.5d47

Рабочее колесо для центробежного насоса, центробежный насос, а также его использование

Настоящее изобретение относится к рабочему колесу (40) для центробежного насоса, центробежному насосу и его применению. Настоящее изобретение в особенности относится к новой конструкции закрытого рабочего колеса (40) для центробежного насоса. Центробежный насос, в котором применяется рабочее...
Тип: Изобретение
Номер охранного документа: 0002688066
Дата охранного документа: 17.05.2019
+ добавить свой РИД