×
27.10.2015
216.013.88be

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ И СОВЕРШЕНСТВОВАНИЯ АЭРОГИДРОДИНАМИЧЕСКИХ КОМПОНОВОК ЭКРАНОПЛАНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании различных режимов движения экраноплана в аэродинамической трубе при использовании модели экраноплана, оснащенной встроенным движительным комплексом и деформируемыми элементами конструкции, находящимися ниже ватерлинии. Использование деформируемых элементов в конструкции модели экраноплана позволяет варьировать величину осадки модели при моделировании границы раздела сред жестким экраном. Испытания модели экраноплана с деформируемыми элементами в аэродинамической трубе проводят на шестикомпонентных аэродинамических весах с жестким закреплением модели, при этом методику проведения испытаний изменяют в части последовательности съема данных при заданных параметрах движения, выполняют варьирование угла атаки при фиксированных высотах центра тяжести (точки поворота модели). По результатам испытаний выявляют геометрические параметры движительного комплекса и режимы его работы, а также положение органов механизации крыла, обеспечивающих наилучшее аэродинамическое качество (отношение подъемной силы к аэродинамической силе сопротивления). Технический результат заключается в сокращении времени проведения исследований, исключении масштабного эффекта и необходимости учета поправок при сопоставлении результатов испытаний нескольких разномасштабных моделей на различных экспериментальных установках.
Основные результаты: Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов, при котором изготавливают модель экраноплана, проводят ее испытания в аэродинамической трубе для определения аэродинамических характеристик в различных режимах движения с использованием неподвижного жесткого экрана, моделирующего границу раздела сред (вода-воздух), проводят измерения и обработку результатов испытаний, проводят анализ полученных результатов и характеристик экраноплана для выявления направлений совершенствования его компоновочной схемы, отличающийся тем, что модель экраноплана для проведения испытаний в аэродинамической трубе оснащают встроенным движительным комплексом и деформируемыми элементами конструкции, находящимися ниже ватерлинии, проводят тарировку движительного комплекса при взаимодействии с набегающим воздушным потоком (без модели или изолированным от модели по силовому и аэродинамическому взаимодействию) для выявления силовых и моментных характеристик при варьировании тяги, скорости воздушного потока, углов отклонения вектора тяги, натекании воздушного потока в вертикальной и горизонтальной плоскостях, проводят испытания модели с работающим движительным комплексом при:- нулевой скорости набегающего воздушного потока для выявления наиболее выгодного положения движительного комплекса (воздушных винтов или сопловых аппаратов поддувных двигателей),- варьировании угла дифферента и осадки от нормальной до нулевой за счет изменения формы деформируемых элементов конструкции модели при их контакте с жестким экраном, варьировании параметров движительного комплекса (тяга, угол наклона вектора тяги) при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения при контакте с границей раздела сред,- варьировании угла тангажа и высоты над жестким экраном, варьировании параметров движительного комплекса (тяга, угол наклона вектора тяги) при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения без контакта с границей раздела сред,- варьировании угла тангажа и высоты над жестким экраном для определения характеристик в крейсерском режиме движения и в полете вне зоны экранного эффекта,обрабатывают результаты испытаний с учетом силовых и моментных характеристик, обусловленных:- взаимодействием движительного комплекса с набегающим потоком,- взаимодействием деформируемых элементов конструкции модели экраноплана при контакте с жестким экраном,проводят анализ полученных результатов и характеристик экраноплана для выявления направлений совершенствования компоновочной схемы экраноплана.

Изобретение относится к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов с поддувом под крыло и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов.

Экспериментальные исследования по совершенствованию аэрогидродинамических компоновок экранопланов проводятся в различных исследовательских организациях в России и в ряде зарубежных стран. Однако, в России комплексные исследования по отработке и совершенствованию аэрогидродинамических компоновок многорежимных транспортных средств - экранопланов могут быть выполнены только в Федеральных государственных унитарных предприятиях «Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского» и «Крыловский государственный научный центр», которые имеют гидроканал и опытовые басейны с возможностью буксировки моделей с большими скоростями.

Известны способы исследования и совершенствования аэрогидродинамических компоновок экранопланов и экспериментальные установки для их осуществления, описанные в работах: Трещевский В.Н., Волков Л.Д, Короткий А.И., "Аэродинамический эксперимент в судостроении", Л.: "Судостроение", 1976 г.; Волков Л.Д., Пономарев А.В., Трещевский В.Н., «Проблемы аэродинамики экранопланов», Международная конференция по судостроению, ЦНИИ им. акад. А.Н. Крылова, Санкт-Петербург, 1994 г.; Белавин Н.И., "Экранопланы" (второе, переработанное и дополненное издание), Л.: "Судостроение", 1977 г.

Исследования и совершенствование аэрогидродинамических компоновок экранопланов, как правило, выполняются поэтапно и с использованием нескольких моделей:

- на газодинамическом стенде с моделированием границы раздела сред жестким экраном - выполняется моделирование движения в отрыве от поверхности, но при нулевой скорости полета (поддув на стопе);

- на газодинамическом стенде при размещении модели над чашей с водой с варьированием заглубления - выполняется моделирование поддува на стопе;

- в опытовом бассейне с варьированием заглубления - моделирование взлетно-посадочных режимов с поддувом под крыло;

- в аэродинамической трубе с моделированием границы раздела сред жестким экраном - моделирование движения в отрыве от поверхности с поддувом под крыло и при обдуве крыла.

Принятая практика организации исследований приводит к необходимости учета способа моделирования границы раздела сред, масштабного эффекта при сопоставлении результатов испытаний нескольких разномасштабных моделей на различных экспериментальных установках, а также учета многочисленных поправок, вводимых при обработке результатов испытаний.

Предложенный способ исследования и совершенствования аэрогидродинамических компоновок экранопланов позволяет с использованием одной модели экраноплана, оснащенной встроенным движительным комплексом, на одной экспериментальной установке выполнить моделирование различных режимов движения с воспроизведением условий полета без контакта с границей раздела сред, а также режимов движения в контакте с границей раздела сред, но без воспроизведения ее деформации под действием аэродинамических сил.

В результате применения предложенного способа сокращается время проведения исследований, снижается стоимость изготовления моделей, исключается масштабный эффект и необходимость учета многочисленных поправок при сопоставлении результатов испытаний нескольких разномасштабных моделей на различных экспериментальных установках.

Упомянутый результат достигается при использовании предложенного способа исследования и совершенствования аэрогидродинамических компоновок экранопланов за счет моделирования различных режимов движения экраноплана в аэродинамической трубе при использовании модели экраноплана, оснащенной встроенным движительным комплексом и деформируемыми элементами конструкции, находящимися ниже ватерлинии. Использование деформируемых элементов в конструкции модели экраноплана позволяет варьировать величину осадки модели при моделировании границы раздела сред жестким экраном.

Сущность предложенного способа описана ниже.

При изготовлении модели экраноплана ее оснащают встроенным движительным комплексом и двумя вариантами водоизмещающих элементов: жесткими и деформируемыми.

На встроенный движительный комплекс налагают требования по геометрическим и тяговым характеристикам, по углам отклонения вектора тяги - газовых струй от движителей (двигателей) для обеспечения моделирования всех заложенных в проект экраноплана режимов работы, включая взлетно-посадочные режимы, крейсерский режим движения и полет вне экрана.

Тарируют тягу движительного комплекса, закрепленного на измерительном оборудовании, в аэродинамической трубе при варьировании задаваемой мощности, скорости и углов натекания (в вертикальной и горизонтальной плоскостях) набегающего воздушного потока, угла поворота вектора тяги.

Варьируют осадку экраноплана - величину погружения в воду водоизмещающих элементов и органов механизации крыла (ограждения зоны воздушной подушки), при моделировании границы раздела сред жестким экраном за счет оснащения модели экраноплана деформируемыми (сминаемыми) элементами конструкции, изготовленными из материала, имеющего большую степень сжатия, например, поролона.

Деформируемые элементы, моделирующие водоизмещающие элементы и механизацию крыла экраноплана, должны отвечать следующим требованиям:

- обеспечивать непроницаемость для воздуха по габариту;

- иметь достаточную жесткость для исключения искажения формы за счет воздействия скоростного напора;

- иметь конструкцию, одинаково сминаемую при заданном числе циклов, достаточном для проведения всего объема испытаний;

- по возможности обеспечивать минимальную вертикальную силу при сжатии.

Для проведения испытаний модели с деформируемыми элементами дорабатывают типовую методику проведения экспериментальных исследований на шестикомпонентных аэродинамических весах с жестким закреплением модели, исключающим ее перемещение при воздействии воздушного потока. При этом методику проведения испытаний изменяют в части последовательности съема данных при заданных параметрах движения выполняют варьирование угла атаки при фиксированных высотах центра тяжести (точки поворота модели), а при типовом эксперименте по определению аэродинамических характеристик экраноплана выполняют варьирование высоты задней кромки крыла при фиксированных углах тангажа модели.

Обработку экспериментальных данных для учета искажений вертикальной силы и момента тангажа, вызванных усилиями при деформации деформируемых элементов модели, осуществляют в следующей последовательности: определяют усилия, действующие на модель при обжатии деформируемых элементов модели при отсутствии набегающего потока и неработающем движительном комплексе; выполняют измерения для заданных углов тики и высот центра тяжести над жестким экраном при работающем движительном комплексе.

Последующие измерения выполняют для тех же углов атаки и высот центра тяжести над жестким экраном при варьировании режимов работы движительного комплекса по тяге, углу поворота вектора тяги.

Поправки на влияние электропроводки к двигателям встроенного движительного комплекса на аэродинамические характеристики модели учитывают так же, как и при типовом эксперименте.

Проводят испытания модели с работающим движительным комплексом с моделированием амфибийного режима движения (в том числе и при нулевой скорости движения) или в режиме создания динамической воздушной подушки при различном заглублении водоизмещающих элементов. Испытания выполняют при варьировании угла дифферента и осадки от нормальной до нулевой, варьировании параметров движительного комплекса (тяга, угол наклона вектора тяги) при нулевой скорости набегающего воздушного потока для выявления наиболее выгодного положения движительного комплекса (воздушных винтов или сопловых аппаратов поддувных двигателей). Начальные значения перечисленных параметров и диапазоны их изменения задают исходя из конструктивных особенностей проекта и с использованием рекомендуемых ограничений.

По результатам испытаний выявляют геометрические параметры движительного комплекса и режимы его работы, а также положение органов механизации крыла, обеспечивающих наилучшее аэродинамическое качество (отношение подъемной силы к аэродинамической силе сопротивления).

При необходимости корректируют положение движительного комплекса.

Критериями для совершенствования компоновки экраноплана служат:

- диапазон изменения положения центра давления в динамической воздушной подушке под крылом;

- отношение подъемной силы и аэродинамического сопротивления к тяге движительного комплекса при коэффициенте тяги, равном бесконечности.

При всех параметрах (угол дифферента, осадка, угол поворота поддувных струй, угол перекладки механизации крыла) подъемная сила должна быть положительной.

При фиксированных угле дифферента и осадке определяют максимальную подъемную силу при варьировании угла поворота поддувных струй.

Проводят испытания модели с работающим движительным комплексом при варьировании угла дифферента и осадки от нормальной до нулевой за счет изменения формы деформируемых элементов конструкции модели при их контакте с жестким экраном, варьировании параметров движительного комплекса при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения при контакте с границей раздела сред.

По результатам испытаний выявляют параметры движительного комплекса и режимы его работы, положение органов механизации крыла, обеспечивающие наилучшее аэродинамическое качество (отношение подъемной силы к аэродинамической силе сопротивления), оценивают возможность балансировки компоновки. Прорабатывается методика перекладки органов управления, механизации крыла и изменения угла вектора тяги движительного комплекса для обеспечения безопасного движения.

Деформируемые элементы модели экраноплана заменяют аналогичными по назначению жесткими элементами.

Проводят испытания модели с работающим движительным комплексом при варьировании угла тангажа и высоты над жестким экраном, варьировании параметров движительного комплекса (тяга, угол поворота вектора тяги) при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения без контакта с границей раздела сред.

Испытания проводят при варьировании высоты задней кромки крыла над жестким экраном при фиксированных углах тангажа. Обработку результатов выполняют по обычной методике.

По результатам испытаний выявляют параметры движительного комплекса и режимы его работы, положение органов механизации крыла, обеспечивающих наилучшее аэродинамическое качество, оценивают возможность балансировки. Прорабатывается методика перекладки органов управления, механизации крыла и изменения угла вектора тяги движительного комплекса для обеспечения безопасного движения.

Проводят испытания модели с работающим движительным комплексом при варьировании угла тангажа и высоты над жестким экраном для определения характеристик в крейсерском режиме движения и в полете вне зоны экранного эффекта.

Обработку результатов выполняют по обычной методике. Полученные результаты позволяют определить аэродинамическое качество, положение аэродинамических фокусов и область устойчивого движения экраноплана, а также необходимые данные для расчетов устойчивости и управляемости экраноплана.

Результаты испытаний могут быть представлены либо в виде суммарных аэродинамических характеристик, либо в виде суммы сил и моментов, реализуемых на движительном комплексе и реализуемых собственно на модели экраноплана.

Анализ полученных результатов и характеристик экраноплана может быть использован для выявления направлений совершенствования компоновочной схемы экраноплана и размещения движительного комплекса.

Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов, при котором изготавливают модель экраноплана, проводят ее испытания в аэродинамической трубе для определения аэродинамических характеристик в различных режимах движения с использованием неподвижного жесткого экрана, моделирующего границу раздела сред (вода-воздух), проводят измерения и обработку результатов испытаний, проводят анализ полученных результатов и характеристик экраноплана для выявления направлений совершенствования его компоновочной схемы, отличающийся тем, что модель экраноплана для проведения испытаний в аэродинамической трубе оснащают встроенным движительным комплексом и деформируемыми элементами конструкции, находящимися ниже ватерлинии, проводят тарировку движительного комплекса при взаимодействии с набегающим воздушным потоком (без модели или изолированным от модели по силовому и аэродинамическому взаимодействию) для выявления силовых и моментных характеристик при варьировании тяги, скорости воздушного потока, углов отклонения вектора тяги, натекании воздушного потока в вертикальной и горизонтальной плоскостях, проводят испытания модели с работающим движительным комплексом при:- нулевой скорости набегающего воздушного потока для выявления наиболее выгодного положения движительного комплекса (воздушных винтов или сопловых аппаратов поддувных двигателей),- варьировании угла дифферента и осадки от нормальной до нулевой за счет изменения формы деформируемых элементов конструкции модели при их контакте с жестким экраном, варьировании параметров движительного комплекса (тяга, угол наклона вектора тяги) при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения при контакте с границей раздела сред,- варьировании угла тангажа и высоты над жестким экраном, варьировании параметров движительного комплекса (тяга, угол наклона вектора тяги) при ненулевой скорости набегающего воздушного потока для определения характеристик в режимах движения без контакта с границей раздела сред,- варьировании угла тангажа и высоты над жестким экраном для определения характеристик в крейсерском режиме движения и в полете вне зоны экранного эффекта,обрабатывают результаты испытаний с учетом силовых и моментных характеристик, обусловленных:- взаимодействием движительного комплекса с набегающим потоком,- взаимодействием деформируемых элементов конструкции модели экраноплана при контакте с жестким экраном,проводят анализ полученных результатов и характеристик экраноплана для выявления направлений совершенствования компоновочной схемы экраноплана.
Источник поступления информации: Роспатент

Showing 271-280 of 364 items.
26.09.2018
№218.016.8c01

Устройство для измерения осадки плавучего средства на волнении

Изобретение относится к области судостроения и касается вопроса создания технических средств контроля осадки судна на волнении и на спокойной воде как в дрейфе, так и на ходу, включая аварийные ситуации. Предложено устройство для измерения осадки плавучего средства, содержащее два...
Тип: Изобретение
Номер охранного документа: 0002668003
Дата охранного документа: 25.09.2018
11.10.2018
№218.016.8f9e

Композиция для светопоглощающего покрытия

Изобретение относится к покрытиям, обладающим способностью поглощать световое излучение определенного диапазона частот. Композиция покрытия включает в себя неорганический пигмент, полимерное связующее, отвердитель, растворители, и имеет следующий состав, в вес. %: уретановый каучук 7-10,...
Тип: Изобретение
Номер охранного документа: 0002669097
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.8fbf

Сопловой аппарат реверсивной турбины

Сопловой аппарат реверсивной турбины включает сопловой аппарат прямого хода, расположенный на нижнем ярусе турбины, сопловой аппарат заднего хода, расположенный в верхнем ярусе турбины, и промежуточный корпус. На внешней стороне промежуточного корпуса закреплены секторы соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002669223
Дата охранного документа: 09.10.2018
11.10.2018
№218.016.901f

Способ определения в ледовом бассейне дистанции торможения крупнотоннажного судна при проводке его ледоколом

Изобретение относится к области морского транспорта и способам проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Способ включает приготовление в ледовом бассейне ледяных полей, имитирующих различные ледовые условия,...
Тип: Изобретение
Номер охранного документа: 0002669158
Дата охранного документа: 08.10.2018
17.10.2018
№218.016.92e3

Источник питания для станций безобмоточного размагничивания кораблей

Изобретение относится к области размагничивания кораблей. Источник питания для станций безобмоточного размагничивания кораблей содержит неуправляемый трехфазный источник питания переменного тока, зарядное устройство, емкостной накопитель энергии, датчик напряжения, мостовой коммутатор, датчик...
Тип: Изобретение
Номер охранного документа: 0002669761
Дата охранного документа: 15.10.2018
28.10.2018
№218.016.97a8

Способ получения n-изопропил-n'-фенил-п-фенилендиамина

Изобретение относится к области органической химии, конкретно к способу получения N-изопропил-N'-фенил-п-фенилендиамина путем алкилирования п-аминодифениламина. Способ характеризуется тем, что в качестве алкилирующего агента используют изопропилбромид, а в качестве акцептора для связывания...
Тип: Изобретение
Номер охранного документа: 0002670975
Дата охранного документа: 26.10.2018
01.11.2018
№218.016.988b

Грузовая пневматическая шина радиального типа

Изобретение относится к автомобильной промышленности. Грузовая пневматическая шина радиального типа с протектором, металлокордным каркасом, брекерной конструкцией содержит четыре либо три пересекающихся под углом слоя брекера (1) из высокопрочных стальных кордов. По меньшей мере два слоя...
Тип: Изобретение
Номер охранного документа: 0002671112
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.989e

Грузовая цельнометаллокордная пневматическая шина с усиливающим бандажом

Изобретение относится к автомобильной промышленности. Грузовая цельнометаллокордная пневматическая радиальная шина с протектором, металлокордным каркасом содержит три слоя брекера из высокопрочных стальных кордов со структурой (3×0,20+6×0,35) и плотностью 65 нитей на дециметр и усиливающий...
Тип: Изобретение
Номер охранного документа: 0002671111
Дата охранного документа: 29.10.2018
26.12.2018
№218.016.aaf9

Способ изготовления утоньшенной двухспектральной фоточувствительной сборки

Изобретение относится к технологии изготовления полупроводниковых двухспектральных гибридизированных сборок и может использоваться для создания матричных фотоприемников (МФП) различного назначения. Изобретение решает задачу изготовления утоньшенной двухспектральной фоточувствительной сборки (УД...
Тип: Изобретение
Номер охранного документа: 0002676052
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.acab

Способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки

Использование: для изготовления индиевых микроконтактов в матричных фотоприемниках. Сущность изобретения заключается в том, что способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки на полупроводниковых пластинах с матрицами БИС считывания или фотодиодными...
Тип: Изобретение
Номер охранного документа: 0002676222
Дата охранного документа: 26.12.2018
Showing 261-267 of 267 items.
20.01.2018
№218.016.1a13

Двигательно-движительная установка подводного аппарата

Изобретение относится к области морской подводной техники, а именно к конструкциям двигательно-движительных установок подводных аппаратов. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, узел уплотнения и движитель. В качестве...
Тип: Изобретение
Номер охранного документа: 0002636429
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.2481

Интегральный аттенюатор

Использование: для создания схем дифференциальных аттенюаторов для работы в СВЧ диапазоне. Сущность изобретения заключается в том, что интегральный аттенюатор содержит генератор дифференциального сигнала, звенья, состоящие из параллельно включенных управляемых МОП транзисторов n- и p-типа, блок...
Тип: Изобретение
Номер охранного документа: 0002642538
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e56

Криогенный гироскоп

Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему...
Тип: Изобретение
Номер охранного документа: 0002643942
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.30d7

Мобильная лаборатория для испытаний на электромагнитные воздействия

Изобретение относится к устройствам для испытаний на стойкость к воздействию электромагнитного поля. Мобильная лаборатория для испытаний на электромагнитные воздействия выполнена в форм-факторе микроавтобуса, салон которого разделен перегородкой в виде электромагнитного экрана, отделяющего...
Тип: Изобретение
Номер охранного документа: 0002644988
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3332

Система регенерации гипоксической газовоздушной среды с повышенным содержанием аргона для обитаемых герметизированных объектов

Изобретение относится к средствам обеспечения обитаемости и пожаробезопасности подводных лодок, глубоководных обитаемых аппаратов и других средств освоения мирового океана, автономных космических объектов и других герметичных обитаемых объектов. Минимизация рисков возгораний и развития пожаров...
Тип: Изобретение
Номер охранного документа: 0002645508
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.34c9

Рыбопромысловое судно ледового плавания

Изобретение относится к области судостроения и касается вопроса эксплуатации рыбопромыслового судна в тяжелых ледовых условиях. Предложено рыбопромысловое судно ледового плавания, включающее корпус с ледовыми обводами и ледовым усилением, размещенные в отсеках балластные цистерны с балластной...
Тип: Изобретение
Номер охранного документа: 0002646042
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.34cf

Способ изготовления образца сотового заполнителя для испытаний

Изобретение относится к способам изготовления образцов для испытаний и может применяться при аттестации сотовых структур в области кораблестроения, авиастроения и космической техники. Изготавливают два одинаковых блока сотового заполнителя и приклеивают их торцевыми поверхностями к...
Тип: Изобретение
Номер охранного документа: 0002646082
Дата охранного документа: 01.03.2018
+ добавить свой РИД