×
10.10.2015
216.013.81c9

Результат интеллектуальной деятельности: СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ

Вид РИД

Изобретение

№ охранного документа
0002564822
Дата охранного документа
10.10.2015
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле. Далее принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле ρ=(3КλМ-3M)/(АКλ+2А), где М - молекулярная масса вещества; λ - длина зондирующей волны; А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества; К=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно. Техническим результатом является упрощение процедуры определения плотности вещества. 1 ил.
Основные результаты: Сверхвысокочастотный способ определения плотности древесины, включающий зондирование образца древесины электромагнитными волнами, отличающийся тем, что принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формулеρ=(3КλМ-3M)/(АКλ+2А),где М - молекулярная масса вещества; λ - длина зондирующей волны;А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества;K=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды,Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения плотности древесины, предусматривающий измерение выталкивающей силы воды, действующей на образец древесины, погруженный в воду. Этот способ (см. описание изобретения SU №569897 A, 1977) включает взвешивание образца на воздухе и предварительное замачивание образца в воде. После этого через фиксированные интервалы времени измеряют изменения выталкивающей силы воды, действующей на образец в момент его погружения в воду и выталкивающей силы воды, действующей на образец в течение определенного времени после погружения образца в воду. В результате разделение действующей на образец выталкивающей силы, равной весу вытесненной жидкости, на плотность воды дает возможность определить плотный объем данного образца. Согласно данному способу по величине деления веса образца до его погружения в воду и найденного плотного объема образца через выталкивающие силы воды определяют плотность древесины.

Недостатком этого известного технического решения является сложность процедуры измерения величин выталкивающих сил воды, действующих на погруженный в воду образец древесины.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ, реализуемый сверхвысокочастотным устройством (см. А.Л. Гутман, Гончаров, О.П. Иванова и др. Измерение плотности и толщины древесностружечных плит СВЧ-методом. Известия высш. учебн. заведений. Лесной журнал №1, 1985, стр. 69-73). В этом устройстве, содержащем клистронный СВЧ генератор, снабженный вентилем, делитель мощности, развязывающий вентиль, настроенные аттенюатор и фазовращатель, отсчетный фазовращатель, рупорные антенны, двойной волноводный тройник с детекторной камерой и усилитель, перед измерением проводят балансировку плеч измерительной схемы с помощью настроенных фазовращателя и аттенюатора. Затем помещают между рупорными антеннами исследуемый образец древесины и проводят балансировку схемы посредством отсчетного фазовращателя. Приращение фазового сдвига в этом случае, вычисленное при отсутствии образца и его наличии между антеннами, далее при постоянном значении влажности исследуемого образца древесины используется для определения плотности контролируемой среды.

Недостатком этого способа можно считать сложность процедуры измерения, связанную с необходимой балансировкой плеч измерительной схемы и вычислением фазового сдвига.

Техническим результатом заявляемого технического решения является упрощение процедуры определения плотности вещества.

Технический результат достигается тем, что в сверхвысокочастотном способе определения плотности древесины, включающем зондирование образца древесины электромагнитными волнами, принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле

ρ=(3Kλ2M-3M)/(AKλ2+2А),

где М - молекулярная масса вещества; λ - длина зондирующей волны;

А=4πNα,

где N - число Авогадро; α - поляризуемость молекул вещества;

К=υпар2В2Е4/(υпарпер)2, где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υпар и υпер - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения ортогонально поляризованных волн при естественной анизотропии и разности показателей преломления ортогонально поляризованных волн при искусственной анизотропии в контролируемом образце древесины дает возможность определить плотность древесины.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу определения плотности древесины на основе вычисления скоростей распространения ортогонально поляризованных волн и разности показателей преломления ортогонально поляризованных волн при естественной и искусственной анизотропии древесины с желаемым техническим результатом, т.е. упрощением процедуры определения плотности древесины.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, элемент ввода электромагнитных колебаний в образец древесины 2, первый элемент вывода поляризованной волны 3, второй элемент вывода

на величину λBE2. А что касается показателя преломления волны по линии диаметра изделия (направление электрического поля зондирующей волны ортогонально внешнему электрическому полю), то он останется неизменным. В предлагаемом способе допускается, что показатели преломления поляризованных волн при естественной и искусственной анизотропии равны, т.е. скорости распространения поляризованных волн при естественной и искусственной анизотропии в изделии можно считать равными. В силу этого можно принимать, что υпар и υпер отображают скорости распространения ортогонально поляризованных волн при естественной и искусственной анизотропии в образце древесины соответственно. В соответствии с этим ввиду того, что Δn=λBE2 (при искусственной анизотропии) для υпар можно записать

υпар=c/(n-λВЕ2) (3).

Совместное преобразование выражений (1) и (3) дает возможность записать, что

n=υпарλBE2/(υпарпер) (4).

Известно, что показатель преломления n можно вычислить как

,

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1 формулу (4) с учетом последнего выражения можно переписать как

ε=λ2парλBE2)2/(υпарпер)2.

Обозначим K=(υпарBE2)2/(υпарпер)2. Тогда для ε получаем

ε=Кλ2.

Из формулы Клаузиуса-Моссотти

(ε-1)М/(ε+2)ρ=4πNα/3,

устанавливающей зависимость между диэлектрической проницаемостью ε и плотностью ρ слабополярных веществ, к которым с определенной точностью можно отнести древесину, для плотности контролируемой среды можно записать

ρ=(3εМ-3М)/(4πNαε+8πNα).

Здесь М - молекулярная масса вещества, N - число Авогадро, α - поляризуемость молекул вещества.

После обозначения А=4πNα последняя формула принимает вид:

ρ=(3εМ-3М)/(Аε+2А).

В последнюю формулу вместо ε если поставить Kλ2, то для плотности образца древесины получим:

ρ=(3Kλ2М-3М)/(АКλ2+2А) (5).

Из последней формулы вытекает, что если измерить величины скоростей υпар, υпер и вычислить Δn (изменение показателя преломления) при искусственной анизотропии изделия, то при постоянных значениях М, N, α, λ, В и Е можно определить плотность контролируемого изделия.

В устройстве, реализующем данный способ, с выхода генератора электромагнитных колебаний 1 сигнал посредством элемента ввода 2 направляют по оси высоты изделия 12. В этом случае необходимым условием для поляризации зондирующей волны за счет естественной анизотропии является параллельность направления распространения зондирующей электромагнитной волны с направлением естественной анизотропии в контролируемом изделии. Здесь принимается, что естественная анизотропия в изделии проявляется по направлению его высоты. Зондирование изделия приводит к возникновению пары ортогонально поляризованных волн. Параллельно к силовым линиям зондирующей волны поляризованную волну принимают первым элементом вывода 3. Волна, поляризованная ортогонально силовым линиям зондирующей волны, принимается вторым элементом вывода 4. После этого сигнал, снимаемый с выхода первого элемента вывода 3, подают на вход первого измерителя скорости 5. В этом блоке измеряется скорость υпар (распространение поляризованной волны параллельно силовым линиям зондирующей волны). Для измерения скорости υпер выходной сигнал второго элемента вывода 4 подают на вход второго измерителя скорости 6 (распространение поляризованной волны перпендикулярно силовым линиям зондирующей волны).

В рассматриваемом случае для приобретения контролируемым изделием искусственной анизотропии изделие помещают в внешнее электрическое поле, которое создаются электродами 7 и 8. При этом внешнее электрическое поле направляют параллельно силовым линиям зондирующей волны. В данном случае принимают параллельно силовым линиям зондирующей волны поляризованную волну, так как по этому направлению (по оси высоты изделия) происходит изменение показателя преломления (распространение поляризованной волны параллельно силовым линиям зондирующей волны за счет искусственной анизотропии). Для приема этой поляризованной волны используют третий элемент вывода 9. С выхода этого элемента вывода сигнал далее поступает на вход вычислителя 10, где получают величину изменения (разности) показателя преломления из-за искусственной анизотропии в данном изделии. После этого сигналы с выходов первого и второго измерителей скоростей и вычислителя подают на вход преобразователя 11, в котором согласно алгоритму (5) вычисляют плотность образца древесины. Таким образом, в предлагаемом техническом решении, использующем эффект поляризации электромагнитных волн при их воздействии на древесину с естественной и искусственной анизотропии, на основе измерения скоростей распространения поляризованных волн и вычисления разности показателей преломления волн можно обеспечить упрощение процедуры определения плотности контролируемого вещества.

Данный способ успешно может быть применен на производстве древесностружечных плит при необходимости измерения их плотности, влажности и толщины.

Сверхвысокочастотный способ определения плотности древесины, включающий зондирование образца древесины электромагнитными волнами, отличающийся тем, что принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формулеρ=(3КλМ-3M)/(АКλ+2А),где М - молекулярная масса вещества; λ - длина зондирующей волны;А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества;K=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды,Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.
СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ
Источник поступления информации: Роспатент

Showing 231-240 of 282 items.
29.04.2019
№219.017.3e20

Сверхвысокочастотный измеритель электрических величин

Изобретение относится к области электрических измерений и может быть использовано в измерительной технике для измерения токов и напряжений. Сущность заявленного технического решения заключается в том, что в сверхвысокочастотный измеритель электрических величин, содержащий источник переменного...
Тип: Изобретение
Номер охранного документа: 0002686452
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.3e2c

Способ калибровки расходомера газа

Изобретение относится к области измерительной техники и предназначено для использования в системах измерения расхода газообразных сред. По способу калибровки расходомеров газа используется уменьшение погрешности измерения структурным способом в схеме измерения с отрицательной обратной связью с...
Тип: Изобретение
Номер охранного документа: 0002686451
Дата охранного документа: 25.04.2019
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
10.05.2019
№219.017.5150

Способ удаления гололеда с проводов линии электропередачи

Использование: в области электроэнергетики для защиты проводов линии электропередачи от гололеда. Технический результат - упрощение процесса нагрева проводов линии электропередачи теплотой. Способ удаления гололеда с проводов линии электропередачи включает нагрев проводов линии электропередачи...
Тип: Изобретение
Номер охранного документа: 0002687247
Дата охранного документа: 08.05.2019
10.05.2019
№219.017.516d

Способ и система для быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений

Изобретение относится к разделу вычислительной техники. Техническим результатом способа является уменьшение времени определения максимальной удаленности объектов T. Способ быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений CRC:...
Тип: Изобретение
Номер охранного документа: 0002687222
Дата охранного документа: 07.05.2019
17.05.2019
№219.017.5332

Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин. Техническим результатом является упрощение процедуры измерения плотности бурового раствора. В...
Тип: Изобретение
Номер охранного документа: 0002687710
Дата охранного документа: 15.05.2019
20.05.2019
№219.017.5d34

Привязной аэростат

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат...
Тип: Изобретение
Номер охранного документа: 0002688115
Дата охранного документа: 17.05.2019
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7628

Датчик давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002690971
Дата охранного документа: 07.06.2019
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД