×
10.10.2015
216.013.81c9

Результат интеллектуальной деятельности: СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ

Вид РИД

Изобретение

№ охранного документа
0002564822
Дата охранного документа
10.10.2015
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле. Далее принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле ρ=(3КλМ-3M)/(АКλ+2А), где М - молекулярная масса вещества; λ - длина зондирующей волны; А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества; К=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно. Техническим результатом является упрощение процедуры определения плотности вещества. 1 ил.
Основные результаты: Сверхвысокочастотный способ определения плотности древесины, включающий зондирование образца древесины электромагнитными волнами, отличающийся тем, что принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формулеρ=(3КλМ-3M)/(АКλ+2А),где М - молекулярная масса вещества; λ - длина зондирующей волны;А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества;K=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды,Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения плотности древесины, предусматривающий измерение выталкивающей силы воды, действующей на образец древесины, погруженный в воду. Этот способ (см. описание изобретения SU №569897 A, 1977) включает взвешивание образца на воздухе и предварительное замачивание образца в воде. После этого через фиксированные интервалы времени измеряют изменения выталкивающей силы воды, действующей на образец в момент его погружения в воду и выталкивающей силы воды, действующей на образец в течение определенного времени после погружения образца в воду. В результате разделение действующей на образец выталкивающей силы, равной весу вытесненной жидкости, на плотность воды дает возможность определить плотный объем данного образца. Согласно данному способу по величине деления веса образца до его погружения в воду и найденного плотного объема образца через выталкивающие силы воды определяют плотность древесины.

Недостатком этого известного технического решения является сложность процедуры измерения величин выталкивающих сил воды, действующих на погруженный в воду образец древесины.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ, реализуемый сверхвысокочастотным устройством (см. А.Л. Гутман, Гончаров, О.П. Иванова и др. Измерение плотности и толщины древесностружечных плит СВЧ-методом. Известия высш. учебн. заведений. Лесной журнал №1, 1985, стр. 69-73). В этом устройстве, содержащем клистронный СВЧ генератор, снабженный вентилем, делитель мощности, развязывающий вентиль, настроенные аттенюатор и фазовращатель, отсчетный фазовращатель, рупорные антенны, двойной волноводный тройник с детекторной камерой и усилитель, перед измерением проводят балансировку плеч измерительной схемы с помощью настроенных фазовращателя и аттенюатора. Затем помещают между рупорными антеннами исследуемый образец древесины и проводят балансировку схемы посредством отсчетного фазовращателя. Приращение фазового сдвига в этом случае, вычисленное при отсутствии образца и его наличии между антеннами, далее при постоянном значении влажности исследуемого образца древесины используется для определения плотности контролируемой среды.

Недостатком этого способа можно считать сложность процедуры измерения, связанную с необходимой балансировкой плеч измерительной схемы и вычислением фазового сдвига.

Техническим результатом заявляемого технического решения является упрощение процедуры определения плотности вещества.

Технический результат достигается тем, что в сверхвысокочастотном способе определения плотности древесины, включающем зондирование образца древесины электромагнитными волнами, принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формуле

ρ=(3Kλ2M-3M)/(AKλ2+2А),

где М - молекулярная масса вещества; λ - длина зондирующей волны;

А=4πNα,

где N - число Авогадро; α - поляризуемость молекул вещества;

К=υпар2В2Е4/(υпарпер)2, где В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, υпар и υпер - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения ортогонально поляризованных волн при естественной анизотропии и разности показателей преломления ортогонально поляризованных волн при искусственной анизотропии в контролируемом образце древесины дает возможность определить плотность древесины.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу определения плотности древесины на основе вычисления скоростей распространения ортогонально поляризованных волн и разности показателей преломления ортогонально поляризованных волн при естественной и искусственной анизотропии древесины с желаемым техническим результатом, т.е. упрощением процедуры определения плотности древесины.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, элемент ввода электромагнитных колебаний в образец древесины 2, первый элемент вывода поляризованной волны 3, второй элемент вывода

на величину λBE2. А что касается показателя преломления волны по линии диаметра изделия (направление электрического поля зондирующей волны ортогонально внешнему электрическому полю), то он останется неизменным. В предлагаемом способе допускается, что показатели преломления поляризованных волн при естественной и искусственной анизотропии равны, т.е. скорости распространения поляризованных волн при естественной и искусственной анизотропии в изделии можно считать равными. В силу этого можно принимать, что υпар и υпер отображают скорости распространения ортогонально поляризованных волн при естественной и искусственной анизотропии в образце древесины соответственно. В соответствии с этим ввиду того, что Δn=λBE2 (при искусственной анизотропии) для υпар можно записать

υпар=c/(n-λВЕ2) (3).

Совместное преобразование выражений (1) и (3) дает возможность записать, что

n=υпарλBE2/(υпарпер) (4).

Известно, что показатель преломления n можно вычислить как

,

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1 формулу (4) с учетом последнего выражения можно переписать как

ε=λ2парλBE2)2/(υпарпер)2.

Обозначим K=(υпарBE2)2/(υпарпер)2. Тогда для ε получаем

ε=Кλ2.

Из формулы Клаузиуса-Моссотти

(ε-1)М/(ε+2)ρ=4πNα/3,

устанавливающей зависимость между диэлектрической проницаемостью ε и плотностью ρ слабополярных веществ, к которым с определенной точностью можно отнести древесину, для плотности контролируемой среды можно записать

ρ=(3εМ-3М)/(4πNαε+8πNα).

Здесь М - молекулярная масса вещества, N - число Авогадро, α - поляризуемость молекул вещества.

После обозначения А=4πNα последняя формула принимает вид:

ρ=(3εМ-3М)/(Аε+2А).

В последнюю формулу вместо ε если поставить Kλ2, то для плотности образца древесины получим:

ρ=(3Kλ2М-3М)/(АКλ2+2А) (5).

Из последней формулы вытекает, что если измерить величины скоростей υпар, υпер и вычислить Δn (изменение показателя преломления) при искусственной анизотропии изделия, то при постоянных значениях М, N, α, λ, В и Е можно определить плотность контролируемого изделия.

В устройстве, реализующем данный способ, с выхода генератора электромагнитных колебаний 1 сигнал посредством элемента ввода 2 направляют по оси высоты изделия 12. В этом случае необходимым условием для поляризации зондирующей волны за счет естественной анизотропии является параллельность направления распространения зондирующей электромагнитной волны с направлением естественной анизотропии в контролируемом изделии. Здесь принимается, что естественная анизотропия в изделии проявляется по направлению его высоты. Зондирование изделия приводит к возникновению пары ортогонально поляризованных волн. Параллельно к силовым линиям зондирующей волны поляризованную волну принимают первым элементом вывода 3. Волна, поляризованная ортогонально силовым линиям зондирующей волны, принимается вторым элементом вывода 4. После этого сигнал, снимаемый с выхода первого элемента вывода 3, подают на вход первого измерителя скорости 5. В этом блоке измеряется скорость υпар (распространение поляризованной волны параллельно силовым линиям зондирующей волны). Для измерения скорости υпер выходной сигнал второго элемента вывода 4 подают на вход второго измерителя скорости 6 (распространение поляризованной волны перпендикулярно силовым линиям зондирующей волны).

В рассматриваемом случае для приобретения контролируемым изделием искусственной анизотропии изделие помещают в внешнее электрическое поле, которое создаются электродами 7 и 8. При этом внешнее электрическое поле направляют параллельно силовым линиям зондирующей волны. В данном случае принимают параллельно силовым линиям зондирующей волны поляризованную волну, так как по этому направлению (по оси высоты изделия) происходит изменение показателя преломления (распространение поляризованной волны параллельно силовым линиям зондирующей волны за счет искусственной анизотропии). Для приема этой поляризованной волны используют третий элемент вывода 9. С выхода этого элемента вывода сигнал далее поступает на вход вычислителя 10, где получают величину изменения (разности) показателя преломления из-за искусственной анизотропии в данном изделии. После этого сигналы с выходов первого и второго измерителей скоростей и вычислителя подают на вход преобразователя 11, в котором согласно алгоритму (5) вычисляют плотность образца древесины. Таким образом, в предлагаемом техническом решении, использующем эффект поляризации электромагнитных волн при их воздействии на древесину с естественной и искусственной анизотропии, на основе измерения скоростей распространения поляризованных волн и вычисления разности показателей преломления волн можно обеспечить упрощение процедуры определения плотности контролируемого вещества.

Данный способ успешно может быть применен на производстве древесностружечных плит при необходимости измерения их плотности, влажности и толщины.

Сверхвысокочастотный способ определения плотности древесины, включающий зондирование образца древесины электромагнитными волнами, отличающийся тем, что принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн при их прохождении через образец древесины, помещают контролируемый образец древесины в электрическое поле, принимают возникающую за счет искусственной анизотропии поляризованную волну, распространяющуюся параллельно силовым линиям зондирующей волны, вычисляют изменение показателя преломления этой волны при ее прохождении через образец материала и о плотности ρ древесины судят по формулеρ=(3КλМ-3M)/(АКλ+2А),где М - молекулярная масса вещества; λ - длина зондирующей волны;А=4πNα, где N - число Авогадро; α - поляризуемость молекул вещества;K=υ ВЕ/(υ-υ), где В - коэффициент, зависящий от свойства контролируемой среды,Е - напряженность электрического поля, υ и υ - скорости распространения волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно.
СВЕРХВЫСОКОЧАСТОТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ ДРЕВЕСИНЫ
Источник поступления информации: Роспатент

Showing 181-190 of 282 items.
10.05.2018
№218.016.4741

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к...
Тип: Изобретение
Номер охранного документа: 0002650611
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.491d

Гибридный летательный аппарат

Изобретение относится к области воздухоплавательной техники. Гибридный летательный аппарат содержит оболочку и двигатели с воздушными винтами. Оболочка выполнена в форме тора и имеет внутренний жесткий каркас, при этом в центральном отверстии тора, перпендикулярно плоскости каркаса, установлена...
Тип: Изобретение
Номер охранного документа: 0002651305
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5686

Способ искусственной перекачки физиологической жидкости

Изобретение относится к кардиологии и может быть использовано для перекачивания крови. Способ осуществляется с помощью насоса, в котором используют волнообразное движение текучей среды в замкнутом объеме, создаваемое сжатием и растяжением пьезоэлементов путем подачи переменного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002654618
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5721

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную...
Тип: Изобретение
Номер охранного документа: 0002654929
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5768

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Технический результат - повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002654926
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5772

Устройство для контроля и измерения сопротивления изоляции

Изобретение относится к электрическим измерениям, а именно к измерениям сопротивления изоляции электрических сетей любого рода тока. Техническим результатом заявляемого технического решения является повышение быстродействия и расширение функциональной возможности. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002654917
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5787

Устройство для измерения оборотов диска индукционного счетчика

Изобретение относится к области информационно-измерительной техники. Устройство для измерения оборотов диска индукционного счетчика содержит источник электрической сети, соединенный с входами катушки напряжения и токовой катушки, вращающейся между ними алюминиевый диск и постоянный магнит, в...
Тип: Изобретение
Номер охранного документа: 0002654919
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57c3

Способ измерения вектора путевой скорости транспортного средства

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости достигается тем, что в способе измерения...
Тип: Изобретение
Номер охранного документа: 0002654931
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57f0

Устройство для измерения малых значений токов

Изобретение относится к области контрольно-измерительной техники. Сущность заявленного технического решения заключает в том, что устройство для измерения малых значений тока содержит первичный преобразователь, выполненный в виде неподвижной катушки и подвижного сердечника, микроволновой...
Тип: Изобретение
Номер охранного документа: 0002654911
Дата охранного документа: 23.05.2018
Showing 181-190 of 191 items.
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
11.03.2019
№219.016.dc7a

Устройство для контроля гранулометрического состава кусковых материалов

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство содержит: генератор электромагнитных колебаний; передающую и приемную рупорные антенны; усилитель; элемент ортогональной поляризации, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002404426
Дата охранного документа: 20.11.2010
20.03.2019
№219.016.e8a4

Способ определения средней скорости потока

В процессе измерения с помощью микроволнового генератора (1) вводят в поток сверхвысокочастотные электромагнитные колебания фиксированной частоты и выводят из потока сигнал с доплеровской частотой. Создают базу данных доплеровских частот, связанных со скоростью потока и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002403578
Дата охранного документа: 10.11.2010
04.04.2019
№219.016.fc27

Способ определения высоты слоя сыпучего материала

Предлагаемое изобретение относится к области измерительной техники. Заявлен способ определения высоты слоя сыпучего материала, перемещаемого по аэрожелобу. При этом зондируют материал электромагнитной волной и принимают отраженную от поверхности слоя материала волну. Воздействуют на...
Тип: Изобретение
Номер охранного документа: 0002395789
Дата охранного документа: 27.07.2010
04.04.2019
№219.016.fce2

Устройство для измерения массового расхода вещества

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержит первый и второй генераторы электромагнитных колебаний, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002433376
Дата охранного документа: 10.11.2011
04.04.2019
№219.016.fd0f

Устройство для измерения размеров частицы

Предлагаемое техническое решение относится к измерительной технике. Устройство для измерения размеров частицы, перемещаемой по трубопроводу, содержит источник излучения, детектор, соединенный выходом со входом усилителя. Также устройство содержит циркулятор, измеритель мощности и...
Тип: Изобретение
Номер охранного документа: 0002461810
Дата охранного документа: 20.09.2012
10.04.2019
№219.017.072b

Способ определения толщины металлического покрытия

Изобретение относится к области измерительной техники, а именно к способу определения толщины металлического покрытия, нанесенного на диэлектрическую основу, при котором зондируют металлическое покрытие электромагнитным сигналом излучателя. Повышение точности измерения толщины металлического...
Тип: Изобретение
Номер охранного документа: 0002452938
Дата охранного документа: 10.06.2012
17.04.2019
№219.017.1621

Способ определения толщины диэлектрического покрытия

Способ определения толщины диэлектрического покрытия, нанесенного на металлическую подложку, включает возбуждение в диэлектрическом покрытии поверхностных электромагнитных волн и прием этих волн при их распространении по диэлектрическому покрытию. Согласно изобретению в диэлектрическом покрытии...
Тип: Изобретение
Номер охранного документа: 0002369862
Дата охранного документа: 10.10.2009
09.05.2019
№219.017.4e76

Устройство для измерения толщины диэлектрического покрытия

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения толщины диэлектрического покрытия, нанесенного на диэлектрическую основу. Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с излучателем 2, первый приемник 3, первый...
Тип: Изобретение
Номер охранного документа: 0002413180
Дата охранного документа: 27.02.2011
+ добавить свой РИД