×
10.09.2015
216.013.797f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях. Согласно способу для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t). Причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величины Ux(t)·[Uy(t)-Uy(t)]. Среднее за интервал времени n·dt значение частоты F(t) в момент времени t определяют по формуле , где n - целое значение. Технический результат заключается в повышении точности определения частоты трехфазного напряжения. 3 ил.
Основные результаты: Способ определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величиныUx(t)·[Uy(t)-Uy(t)],определяют среднее за интервал времени n·dt значение частоты F(t) в момент времени t по формуле: , где n - целое значение.

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано в электроэнергетике для контроля усредненных значений частоты в промышленных трехфазных электрических сетях.

Известен способ определения частоты при помощи цифрового измерителя частоты (Патент 1290190 РФ, МПК G01R 23/00. 1987, бюл. №6). Цифровой измеритель частоты содержит формирователь интервала измерения, генератор образцовых частот, счетчики импульсов, сумматор, блок индикации, элемент задержки, RS-триггер, ключ, регистр, D-триггер, двухвходовой элемент И.

Недостатком способа определения частоты и измерителя является значительное время усреднения (счета), необходимое для получения требуемой точности измерений.

К аналогам предлагаемого технического решения также относится способ измерения частоты при помощи устройства для измерения частоты синусоидального сигнала (Патент РФ №2169927, МКП G01R 23/00, 2001, бюл. №18). Устройство для измерения частоты синусоидального сигнала содержит генератор импульсов, распределитель импульсов, счетчик импульсов, регистр, цифровые индикаторы, входной формирователь импульсов, выпрямитель, n входных формирователей импульсов, (n+1) выходных формирователей импульсов, источник опорных напряжений, элемент ИЛИ.

Недостатками данного способа измерения частоты и устройства являются значительное время измерения, а также невысокая точность.

Прототипом является способ измерения частоты трехфазного напряжения при помощи устройства измерения частоты (US №8190387 B2, МПК G01R 23/00, 29.05.2012), предназначенный для измерения промышленной частоты 50 или 60 герц, в котором подсчитывается амплитуда переменного напряжения U(t) методом действующего значения, длину хорды, соединяющей вершины вектора напряжения U(t) в момент времени t и вектора напряжения U(t+dt) в момент времени (t+dt) с помощью метода действующего значения, фазовый угол dφ поворота вектора напряжения U(t) за время dt, откуда подсчитывают частоту F(t), вычисляют динамическую частоту для определения скорости изменения частоты для каждого шага dt.

Недостатком данного способа и устройства является то, что для определения фазового угла dφ поворота вектора напряжения U(t) за время dt используется одно напряжение U(t) промышленной частоты и используется метод действующего значения для подсчета амплитуды и длины хорды данного напряжения. При определении амплитуды и хорды метод действующего значения корректно работает только для сигнала, имеющего форму идеальной синусоиды. При любом отклонении формы сигнала напряжения U(t) от синусоидальной метод действующего значения будет давать ошибку.

Задача, решаемая изобретением, - повышение точности определения частоты трехфазного напряжения за счет отказа от метода действующего значения, а также использование для определения частоты сигналов всех трех фаз промышленного трехфазного напряжения.

Указанный технический результат достигается благодаря тому, что в способе определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<<T, согласно изобретению определяют проекцию Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

определяют проекцию Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяют модуль вращающегося поля U(ti):

,

определяют зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1,)]},

определяют знак dcpj по следующему алгоритму:

- Если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

- Если |Ux(ti)|>|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)],

определяют среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Существенным отличием предлагаемого технического решения является то, что весь процесс определения частоты производится в цифровом виде, используя выходные цифровые сигналы Ua(ti), Ub(ti), Uc(ti) АЦП, на вход которого подаются три фазы Ua, Ub, Uc промышленного трехфазного напряжения, где i - целое значение, измеренные в моменты времени ti, оцифрованные с периодом дискретизации dt=(ti-ti-1), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения dt<<T.

Предлагаемый способ определения частоты трехфазного напряжения поясняется с помощью прилагаемых чертежей (фиг. 1-3), на которых сделаны следующие обозначения.

- Катушки статора двигателя фазы А (1), В (2), С (3), к которым подключено трехфазное напряжение Ua, Ub, Uc.

- Катушки статора двигателя А (1), В(2), С(3) намотаны на магнитопровод статора 4.

- Токи, протекающие по катушкам 1, 2, 3 создают в роторе 5 вращающееся поле U (6).

- Три вектора напряжения Ua (7), Ub (8), Uc (9), между которыми имеется угол 120 градусов, создают проекции на прямоугольную систему координат с осями X (10), Y (11).

- Проекции векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11) создают координаты Ux (12), Uy (13) вращающегося вектора U (6), который имеет угол φ (14) относительно оси X (10).

Сущность изобретения заключается в следующем.

Принцип работы промышленных трехфазных сетей 50 герц связан с подачей на двигатель трехфазного напряжения Ua (7), Ub (8), Uc (9). Токи, протекающие по катушкам фаз А (1), В (2), С (3) статора 4 двигателя, к которым подключено трехфазное напряжение Ua (7), Ub (8), Uc (9), создают в роторе 5 двигателя вращающееся поле U (6), последнее и вращает ротор 5 двигателя.

Соответственно частотой F трехфазной сети является частота вращения поля U (6), угол φ (14) которого относительно оси X (10) непрерывно увеличивается с вращением поля U (6). Увеличение угла φ (14) на угол 2π происходит за один оборот поля U (6), или за период T частоты F=1/T. Подсчитав скорость изменения угла φ (14), найдем частоту F трехфазного напряжения Ua (7), Ub (8), Uc (9).

Координаты Ux (12), Uy (13) вращающегося вектора U (6) получаются из проекций векторов Ua (7), Ub (8), Uc (9) на оси X (10), Y (11):

Ux=(Uc-Ub)·√3/2,

Uy=Ua-(Ub+Uc)/2.

Модуль (длина) вектора U (6) определяется из координат Ux (12), Uy (13):

U=√(U2x+U2y).

Для определения частоты F трехфазного напряжение Ua (7), Ub (8), Uc (9) в микропроцессорных терминалах используются цифровые сигналы всех трех фаз Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, измеренные в моменты времени ti, где i - целое значение, оцифрованные с периодом дискретизации dt=(ti-ti-1). Причем величина dt значительно меньше периода T наибольшей частоты Fb=1/T диапазона измерения частоты F, dt<<T.

В каждый момент времени ti определяется проекция Ux(ti) на ось абсцисс X вращающегося поля U(ti), создаваемого тремя фазами Ua(ti), Ub(ti), Uc(ti) промышленного трехфазного напряжения, по формуле:

,

определяется проекция Uy(ti) на ось абсцисс Y вращающегося поля U(ti):

Uy(ti)=(2·Ua(ti)-Ub(ti)-Uc(ti))/2,

определяется модуль вращающегося поля U(ti):

,

определяется зависимость от времени ti приращения фазы dφi вращающегося поля U(ti) за интервал dt=(ti-ti-1) по формуле:

|dφi|=|φ(ti)-φ(ti-1)|=arccos{[Ux(ti)·Ux(ti-1)+Uy(ti)·Uy(ti-1)]/[U(ti)·U(ti-1)]}

Приращение dφi, вычисляемое с использованием тригонометрической функции arcos(), будет всегда положительным. Поэтому для определения знака dφi проведем дополнительные вычисления.

если |Ux(ti)|≤|Uy(ti)|, то знак dφi равен знаку величины

Uy(ti)·[Ux(ti-1)-Ux(ti)],

если |Ux(ti)|Uy(ti)|, то знак dφi равен знаку величины

Ux(ti)·[Uy(ti)-Uy(ti-1)].

Для повышения точности измерения частоты F(ti) определяется среднее за интервал времени n·dt значение частоты F(ti) в момент времени ti по формуле:

, где n - целое значение.

Предлагаемый способ определения частоты трехфазного напряжения будет работать всегда, когда трехфазное напряжение формирует вращающееся поле, и не будет работать, если вращающееся поле не формируется (например, при потере двух фаз напряжения из трех).

Таким образом, предлагаемый способ определения частоты трехфазного напряжения позволяет за короткий интервал времени определить частоту трехфазного напряжения, которое непосредственно вращает роторы двигателей. При этом за счет использования всех трех фаз промышленного напряжения 50 герц повышается точность измерения частоты.

Способ определения частоты трехфазного напряжения, в котором для определения частоты F используют цифровые сигналы всех трех фаз Ua(t), Ub(t), Uc(t) промышленного трехфазного напряжения, измеренные в моменты времени t, где i - целое значение, оцифрованные с периодом дискретизации dt=(t-t), причем величина dt значительно меньше периода Т наибольшей частоты Fb=1/T диапазона измерения, dt<|Uy(t)|, то знак dφ равен знаку величиныUx(t)·[Uy(t)-Uy(t)],определяют среднее за интервал времени n·dt значение частоты F(t) в момент времени t по формуле: , где n - целое значение.
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ ТРЕХФАЗНОГО НАПРЯЖЕНИЯ
Источник поступления информации: Роспатент

Showing 161-166 of 166 items.
26.08.2017
№217.015.e3f9

Адаптивное цифровое сглаживающее и прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности обработки данных. Для этого в блок прогноза адаптивного цифрового сглаживающего и прогнозирующего устройства,...
Тип: Изобретение
Номер охранного документа: 0002626338
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e418

Способ работы термоэлектрического генератора

Изобретение относится к способу круглогодичной и круглосуточной термоэлектрической генерации, а именно к способу прямого преобразования солнечной радиации в электрическую энергию сочетанием фотоэлектрических и термоэлектрических преобразователей для обеспечения экологически чистым...
Тип: Изобретение
Номер охранного документа: 0002626242
Дата охранного документа: 25.07.2017
29.12.2017
№217.015.fa10

Способ определения мест повреждений разветвленной воздушной линии электропередачи в виде появления гололёда на проводах

Изобретение относится к электротехнике и предназначено для решения технической проблемы, касающейся определения мест повреждений разветвленной воздушной линии электропередачи (ЛЭП) в виде появления гололеда на проводах с точностью до участка ЛЭП. Способ определения мест повреждений...
Тип: Изобретение
Номер охранного документа: 0002639715
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00ff

Способ опознавания объекта в когерентном свете

Изобретение может быть использовано для привязки и ориентации на местности при наведении теплового источника излучения на местности. Способ включает формирование первого и второго световых пучков с длинами волн λ и λ с помощью первого и второго коллиматоров, оптические оси которых образует угол...
Тип: Изобретение
Номер охранного документа: 0002629716
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.010e

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности обработки данных. Для этого в блок прогноза адаптивного цифрового прогнозирующего устройства, содержащий три...
Тип: Изобретение
Номер охранного документа: 0002629643
Дата охранного документа: 30.08.2017
17.02.2018
№218.016.2ca0

Цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов и может быть использовано в цифровых системах контроля и наведения. Техническим результатом является увеличение времени прогноза в пять раз. Устройство содержит три...
Тип: Изобретение
Номер охранного документа: 0002643645
Дата охранного документа: 02.02.2018
Showing 161-170 of 184 items.
10.04.2016
№216.015.31c3

Способ изготовления фильтра интерференционного

Способ изготовления фильтра интерференционного включает в себя оптическое соединение между собой N цилиндрических оптических элементов с образованием многокомпонентного интерференционного фильтра. На боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной...
Тип: Изобретение
Номер охранного документа: 0002580179
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4e61

Установка для подземной газификации топлива

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации. Установка содержит газовую турбину,...
Тип: Изобретение
Номер охранного документа: 0002595126
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.67e6

Теплообменная труба

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В теплообменной трубе со скругленными выемками на наружной поверхности и соответствующими им скругленными выступами высотой h на внутренней поверхности, которые нанесены с шагом S, скругленные...
Тип: Изобретение
Номер охранного документа: 0002591376
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.73d8

Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет...
Тип: Изобретение
Номер охранного документа: 0002597962
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.82fe

Способ получения брикетов

Изобретение раскрывает способ получения брикетов, включающий обезвоживание шлама и последующее его прессование при давлении 30-35 МПа, характеризующийся тем, что используют высушенный замазученный карбонатный шлам химводоочистки тепловых электрических станций с влажностью не более 4%,...
Тип: Изобретение
Номер охранного документа: 0002601316
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83ad

Установка подготовки твердого топлива к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для подготовки твердого топлива к сжиганию на тепловых электрических станциях (ТЭС). Установка подготовки твердого топлива к сжиганию содержит технологически соединенные между собой тракт сырого топлива, бункер сырого топлива,...
Тип: Изобретение
Номер охранного документа: 0002601399
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8c9e

Установка для производства пиролизного топлива

Изобретение относится к области низкотемпературного быстрого пиролиза и может быть использовано для производства топлива из биомассы мелкораздробленной древесины. Установка содержит технологически связанные между собой накопительный бункер исходного дисперсного сырья (ИДС) (25), камеру горения...
Тип: Изобретение
Номер охранного документа: 0002604845
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9a79

Способ оптического контроля состояния изолирующей конструкции

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля. заявленный способ оптического контроля состояния изолирующей...
Тип: Изобретение
Номер охранного документа: 0002609823
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a26f

Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий

Изобретение относится к биологической очистке сточных вод и может быть использовано на очистных сооружениях промышленных предприятий. Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий содержит технологически связанные между собой линию подачи сточных вод 12,...
Тип: Изобретение
Номер охранного документа: 0002606989
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ba9c

Установка для получения нагретых газов из углеродсодержащего материала

Изобретение относится к области получения нагретых газов из твердых углеродсодержащих веществ и может быть использовано в энергетике. Установка для получения нагретых газов из углеродсодержащего материала содержит реактор кипящего слоя 1 для конверсии углерода с трубопроводом 6 подачи...
Тип: Изобретение
Номер охранного документа: 0002615690
Дата охранного документа: 06.04.2017
+ добавить свой РИД