×
10.09.2015
216.013.77d8

СПОСОБ ПОЛУЧЕНИЯ МАГНЕЗИАЛЬНОЙ ДОБАВКИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002562269
Дата охранного документа
10.09.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к химической технологии получения магнезиальной добавки для производства гранулированной аммиачной селитры. Сущность состоит в том, что при разложении каустического магнезита азотной кислотой, взятой с избытком от стехиометрии, с последующим отделением неразложившегося остатка от раствора нитрата магния фильтрованием, разложение проводят в две стадии. На первой стадии каустический магнезит, в присутствии фторид- или кремнефторид-ионов разлагают 42-47% азотной кислотой в течение 4-6 часов при температуре не выше 90°C, а на второй полученную суспензию, перед отделением неразложившегося остатка, разбавляют водой до содержания нитрата магния 30-40 мас.% и выдерживают при температуре 70-90°C не менее 30 минут. Содержание фторид- или кремнефторид-ионов не менее 0,1 мас.% в пересчете на фтор по отношению к каустическому магнезиту. Технический результат заключается в увеличении производительности фильтрования суспензий нитрата магния. 4 з.п. ф-лы, 3 табл., 33 пр.
Реферат Свернуть Развернуть

Способ относится к химической технологии получения магнезиальной добавки для производства гранулированной аммиачной селитры и может найти применение при получении магнезиальной добавки с использованием в качестве сырья магнезитов с примесями фторсодержащих соединений.

Промышленные способы производства магнезиальной добавки основаны на разложении различного магнийсодержащего сырья (магнезита, каустического магнезита, брусита) растворами азотной кислоты с последующим отделением неразложившегося остатка и получением в качестве целевого продукта кислых или нейтральных растворов нитрата магния.

Каустический магнезит, применяемый в качестве основного магнийсодержащего сырья при получении магнезиальной добавки, по своему происхождению представляет собой улавливаемую тонкодисперсную пыль из печей обжига природного магнезита в периклаз. При этом в составе каустических магнезитов, содержащих более 75% MgO в качестве основного компонента, наряду с типичными примесями соединений кальция, кремния, полуторных оксидов, может присутствовать в тех или иных количествах фтор в виде фторида магния MgF2 (Симонов К.В. и др. Об образовании и отложении в электрофильтрах сульфатов щелочных и щелочноземельных металлов и фторида магния при обжиге магнезита во вращающихся печах // Огнеупоры, 1979. - №4 - с. 22-27). Практический опыт показал, что в процессе азотнокислотного вскрытия каустических магнезитов, содержащих 0,1% и выше фтора, получаемые суспензии нитрата магния обладают низкими фильтрующими свойствами при отделении неразложившегося остатка. Причиной этого, по-видимому, является интенсификация процесса вскрытия примесных силикатных минералов в присутствии в реакционной среде ионов фтора, образующихся при разложении фторида магния азотной кислотой. Следствием вскрытия силикатных минералов является, в свою очередь, образование кремнийсодержащих гелеобразных соединений, обладающих крайне низкой фильтруемостью и скоростью осаждения.

Известен способ получения магнезиальной добавки путем разложения магнезита смесью 56-58%-й азотной кислоты с 20-50%-ным раствором аммиачной селитры, взятых в массовом соотношении 1,0:(0,6-1,0) с последующим выделением неразложившегося остатка фильтрацией (SU 1792932 А1, опубл. 07.02.1993). Недостатком предложенного способа является недостаточно высокая фильтруемость получаемых суспензий, что является следствием ее высокой вязкости из-за повышенной концентрации в жидкой фазе нитратов магния и аммония. Кроме того, применение аммиачной селитры приводит к снижению содержания в составе магнезиальной добавки основного действующего компонента - нитрата магния. При этом необходимость приготовления смеси с заданным соотношением аммиачной селитры и азотной кислоты усложняет процесс получения магнезиальной добавки.

Известен также способ получения магнезиальной добавки, включающий разложение каустического магнезита 40-45% азотной кислотой с расходом 105-110% от стехиометрического (Авт. свид. №682487, опубл. 30.08.1979). Недостатком способа является то, что в результате разложения каустического магнезита в заявленных условиях получаемая суспензия имеет высокое содержание нитрата магния - до 42%, при этом магнезиальная добавка имеет высокую температуру кристаллизации, что будет осложнять ее хранение и перекачивание в охлажденном виде из-за выпадения в твердую фазу кристаллогидратов нитрата магния. Высокое содержание нитрата магния и, вследствие этого, повышенная вязкость обуславливает недостаточно высокую скорость фильтрации получаемой суспензии при отделении неразложившегося остатка. Кроме того, отмеченное в описании способа повышение температуры реакционной смеси до 100°C и выше будет усиливать разложение азотной кислоты с выделением в газовую фазу токсичных окислов азота.

Наиболее близким по своей сущности к предлагаемому способу является способ получения магнезиальной добавки, заключающийся в разложении каустического магнезита путем его внесения в 35%-ю азотную кислоту, взятую с избытком от стехиометрии, в периодическом режиме при температуре не более 80°C в течение 3-5 часов с последующим отделением неразложившегося остатка от раствора нитрата магния, содержащего избыток азотной кислоты, методами отстаивания или фильтрации (Производство аммиачной селитры в агрегатах большой единичной мощности / М.Е. Иванов, В.М. Олевский, Н.Н. Поляков, с. 159-161).

Недостатком данного способа получения магнезиальной добавки является низкая фильтруемость и скорость отстаивания получаемой в результате разложения каустического магнезита, содержащего выше 0,1% фтора, суспензии, что создает значительные технологические трудности с получением очищенных от твердой фазы растворов нитрата магния.

Задачей, на решение которой направлен предлагаемый способ, является повышение эффективности процесса получения магнезиальной добавки из каустического магнезита за счет улучшения условий выделения неразложившегося остатка методом фильтрации.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении производительности фильтрования суспензий нитрата магния.

Для достижения технического результата в предлагаемом способе, включающем разложение каустического магнезита азотной кислотой, взятой с избытком от стехиометрии, с последующим отделением неразложившегося остатка от раствора нитрата магния фильтрованием, разложение проводят в две стадии, на первой каустический магнезит в присутствии фторид- или (и) кремнефторид-ионов в количестве не менее 0,1% в пересчете на фтор по отношению к каустическому магнезиту, разлагают 42-47% азотной кислотой в течение 4-6 часов при температуре не выше 90°C, а на второй полученную суспензию, перед отделением неразложившегося остатка, разбавляют водой до содержания нитрата магния 30-40% и выдерживают при температуре 70-90°C в течение не менее 30 минут.

Применимость и преимущества заявленного способа для решения поставленной задачи подтверждаются следующими примерами конкретного выполнения.

Пример 1 (по прототипу)

В реактор, оборудованный механическим перемешиванием, загружают 1000 г 58%-й азотной кислоты и разбавляют добавлением 657,1 г воды. Далее в полученный 35%-ный раствор азотной кислоты, подогретый до 60°C, в течение 4 часов равномерно дозируют каустический магнезит состава (в %): MgO - 83,0; СаО - 1,8; SiO2 - 0,7; F - 0,2, R2O3 - 1,9, в т.ч. Fe2O3 - 1,5, Al2O3 - 0,4, в количестве 200 г.

Температуру реакционной смеси в реакторе поддерживают на всем протяжении процесса разложения не выше 80°C скоростью дозировки магнезита. Взятая для разложения масса раствора азотной кислоты соответствует 108% норме от стехиометрии на взаимодействие с MgO, СаО, R2O3.

После окончания внесения всей массы каустического магнезита полученную суспензию дополнительно перемешивают в течение 30 минут, выгружают из реактора и фильтруют на воронке Бюхнера диаметром 7,5 см под вакуумом 80 мм рт.ст, используя в качестве фильтровальной перегородки полипропиленовую ткань. Производительность фильтрации составляет 0,13 м3/(м2·ч) в пересчете на исходную суспензию. Выделенный на фильтре осадок имеет гелеобразную структуру с низкой проницаемостью для жидкой фазы. Полученный фильтрат - раствор магнезиальной добавки в количестве 1803,0 г - содержит 34,0% нитрата магния и 3,5% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 11,5 г.

Пример 2

В реактор загружают 1000 г 58%-й азотной кислоты и 288,9 г воды. Полученным раствором с концентрацией азотной кислоты 45% разлагают 200 г каустического магнезита при его равномерном внесении в реактор. Состав магнезита аналогичен использованному в примере 1. Норма азотной кислоты составляет 108% от стехиометрии. Температура в процессе разложения поддерживается не выше 80°C скоростью дозировки магнезита, продолжительность разложения составляет 4 часа.

По окончании разложения магнезита в реактор вносят 368,2 г воды. Общее количество добавленной воды с учетом предварительного разбавления 58%-й азотной кислоты составляет 657,1 г. Разбавленную суспензию выдерживают при перемешивании в течение 30 минут при температуре 80°C. Далее суспензию в количестве 1822,8 г выгружают из реактора и фильтруют.

Производительность фильтрации составляет 1,38 м3/(м2·ч) в пересчете на исходную суспензию. Выделенный на фильтре осадок имеет зернистую, пористую структуру и имеет высокую проницаемость для жидкой фазы. Выход промытого водой и высушенного осадка - 15,0 г. Полученный после выделения осадка раствор магнезиальной добавки в количестве 1793,2 г содержит 34,1% нитрата магния и 3,7% свободной азотной кислоты.

В примерах 3-6 изменяют концентрацию исходного раствора азотной кислоты, используемого для разложения каустического магнезита, в примерах 7-12 - продолжительность и температуру разложения, в примерах 13-23 - степень разбавления реакционного раствора, температуру и время выдержки разбавленной суспензии. Результаты представлены в таблицах 1-3.

Пример 24

Для получения магнезиальной добавки используют каустический магнезит состава (в %): MgO - 89,4; СаО - 1,9; SiO2 - 1,7; F - 0,05, R2O3 - 2,1, в т.ч. Fe2O3 - 1,6, Al2O3 - 0,5. Разложение 200 г магнезита указанного состава осуществляют путем его внесения в 1416 г 45%-ного раствора азотной кислоты при температуре не выше 80°C.

Норма азотной кислоты составляет 110% от стехиометрии. Время разложения составляет 4 ч. В полученную после разложения магнезита суспензию вносят 404,6 г воды и затем выдерживают в течение 30 минут при температуре 80°C. Далее суспензию в количестве 1999,8 г фильтруют. Производительность фильтрации составляет 0,25 м3/(м2·ч) в пересчете на исходную суспензию. Осадок на фильтре имеет гелеобразную структуру, как и в примере 1. Полученный раствор магнезиальной добавки в количестве 1980,8 г содержит 34,7% нитрата магния и 2,4% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 7,5 г.

Пример 25

Получение магнезиальной добавки осуществляют, как описано в примере 24, но предварительно каустический магнезит массой 200 г, содержащий 0,05% фтора, смешивают с 0,67 г фтористого натрия в виде сухой соли. Содержание фтора в виде фторид-иона в магнезите после добавления NaF составляет 0,2%. После проведения разложения и последующей выдержки получают 1998,5 г суспензии, которую направляют на фильтрацию. Производительность фильтрации составляет 1,45 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1978,8 г содержит 35,0% нитрата магния и 3,5% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,6 г.

Пример 26

Опыт проводят аналогично примеру 25, но в качестве добавки к магнезиту берут 0,27 г фтористого натрия. Содержание фтора в виде фторид-иона в магнезите составляет 0,11%. Производительность фильтрации суспензии составляет 0,98 м3/(м2·ч). Полученный раствор магнезиальной добавки содержит 34,5% нитрата магния и 3,0% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 7,4 г.

Пример 27

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 47%-ный раствор азотной кислоты, взятый в количестве 1355,7 г. Норма азотной кислоты составляет 110% от стехиометрии. Время разложения составляет 4 часа, при температуре не выше 80°C. Предварительно каустический магнезит смешивают с 0,67 г фтористого натрия в виде сухой соли. Содержание фтора в виде фторид-иона в каустическом магнезите после добавления NaF составляет 0,2%. В полученную после разложения магнезита суспензию вносят 464,9 г воды и затем выдерживают в течение 30 минут при температуре 80°C. Далее суспензию в количестве 1995,8 г фильтруют. Производительность фильтрации составляет 1,75 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1979,5 г содержит 34,9% нитрата магния и 3,1% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,8 г.

Пример 28

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 42%-ный раствор азотной кислоты, взятый в количестве 1517,1 г. Норма азотной кислоты составляет 110% от стехиометрии. Время разложения составляет 4 часа, при температуре не выше 80°C. Предварительно каустический магнезит смешивают с 0,67 г фтористого натрия в виде сухой соли. Содержание фтора в виде фторид-иона в каустическом магнезите после добавления NaF составляет 0,2%. В полученную после разложения магнезита суспензию вносят 303,5 г воды и затем выдерживают в течение 30 минут при температуре 80°C. Далее суспензию в количестве 2002,8 г фильтруют. Производительность фильтрации составляет 1,12 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1979,3 г содержит 34,5% нитрата магния и 3,3% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,0 г.

Пример 29

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 1416 г 45%-ного раствора азотной кислоты. Норма взятой азотной кислоты составляет 110% от стехиометрии. В процессе разложения температуру поддерживают не выше 90°C. Время разложения составляет 4 часа. Предварительно каустический магнезит смешивают с 0,67 г фтористого натрия в виде сухой соли. Содержание фтора в виде фторид-иона в каустическом магнезите после добавления NaF составляет 0,2%. В полученную после разложения магнезита суспензию вносят 404,6 г воды и выдерживают в течение 30 минут при температуре 80°C. Разбавленную суспензию нитрата магния в количестве 1995,3 г фильтруют. Производительность фильтрации составляет 1,50 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1970,1 г содержит 35,1% нитрата магния и 3,4% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,6 г.

Пример 30

Опыт проводят аналогично примеру 24, но непосредственно перед разложением в 45%-ный раствор азотной кислоты вводится фторсодержащий азотнофосфорнокислый раствор, получаемый после выделения нитрата кальция в производстве NPK-удобрения при азотнокислотой переработке апатитового концентрата. Используемый азотнофосфорнокислый раствор содержит 1,60% фтора в основном виде кремнефторид-иона. Количество добавляемого раствора составляет 18,8 г, что соответствует суммарному содержанию фтора в виде фторид- и кремнефторид-ионов по отношению к массе разлагаемого каустического магнезита 0,2% в пересчете на фтор.

Производительность фильтрации полученной после разложения магнезита и разбавления водой суспензии составляет 1,61 м3/(м2·ч).

Полученный после фильтрации раствор магнезиальной добавки в количестве 1935,0 г содержит 34,3,0% нитрата магния и 3,6% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 10,6 г.

Пример 31

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 47%-ный раствор азотной кислоты, взятый в количестве 1355,7 г. Норма азотной кислоты составляет 110% от стехиометрии. Время разложения составляет 4 часа, при температуре не выше 80°C. Предварительно перед разложением в раствор азотной кислоты вводится фторсодержащий азотнофосфорнокислый раствор в количестве 18,8 г (состав азотнофосфорнокислого раствора аналогичен использованному в примере 30), что соответствует суммарному содержанию фтора в виде фторид- и кремнефторид-ионов по отношению к массе разлагаемого каустического магнезита 0,2% в пересчете на фтор. В полученную после разложения магнезита суспензию вносят 464,9 г воды и затем выдерживают в течение 30 минут при температуре 80°C. Далее суспензию в количестве 1993,6 г фильтруют. Производительность фильтрации составляет 2,15 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1970,5 г содержит 35,2% нитрата магния и 2,9% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,6 г.

Пример 32

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 42%-ный раствор азотной кислоты, взятый в количестве 1517,1 г. Норма азотной кислоты составляет 110% от стехиометрии. Время разложения составляет 4 часа, при температуре не выше 80°C. Предварительно перед разложением в раствор азотной кислоты вводится фторсодержащий азотнофосфорнокислый раствор в количестве 18,8 г (состав азотнофосфорнокислого раствора аналогичен использованному в примере 30), что соответствует суммарному содержанию фтора в виде фторид- и кремнефторид-ионов по отношению к массе разлагаемого каустического магнезита 0,2% в пересчете на фтор.

В полученную после разложения магнезита суспензию вносят 303,5 г воды и затем выдерживают в течение 30 минут при температуре 80°C. Далее суспензию в количестве 1998,0 г фильтруют. Производительность фильтрации составляет 1,40 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1975,1 г содержит 34,6% нитрата магния и 3,0% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 9,1 г.

Пример 33

Разложение 200 г каустического магнезита, состав которого аналогичен использованному в примере 24, проводят путем его внесения в 1416 г 45%-ного раствора азотной кислоты. Норма взятой азотной кислоты составляет 110% от стехиометрии. В процессе разложения температуру поддерживают не выше 90°C. Время разложения составляет 4 часа. Предварительно перед разложением в раствор азотной кислоты вводится фторсодержащий азотнофосфорнокислый раствор в количестве 18,8 г (состав азотнофосфорнокислого раствора аналогичен использованному в примере 30), что соответствует суммарному содержанию фтора в виде фторид- и кремнефторид-ионов по отношению к массе разлагаемого каустического магнезита 0,2% в пересчете на фтор.

В полученную после разложения магнезита суспензию вносят 404,6 г воды и выдерживают в течение 30 минут при температуре 80°C. Разбавленную суспензию нитрата магния в количестве 1975,3 г фильтруют. Производительность фильтрации составляет 1,75 м3/(м2·ч) в пересчете на исходную суспензию. Полученный раствор магнезиальной добавки в количестве 1961,5 г содержит 35,2% нитрата магния и 3,2% свободной азотной кислоты. Выход промытого водой и высушенного осадка составляет 8,8 г.

Как видно из приведенных примеров, осуществление разложения каустического магнезита по предлагаемому способу приводит к существенному увеличению фильтруемости получаемых суспензий нитрата магния.

По-видимому, разложение каустического магнезита 42-47%-й азотной кислотой в течение 4-6 часов при температуре не выше 90°C в присутствии фторид- или (и) кремнефторид-ионов оказывает положительное влияние на структуру нерастворимых кремнийсодержащих соединений, образующихся в результате разложения примесных силикатных минералов. При этом в процессе разложения в заявленных условиях гелеобразные соединения кремния в значительной мере коагулируют с формированием плотных и крупных частиц, что приводит к улучшению структуры и пористости выделяемого осадка. Механизм положительного воздействия фтора в виде фторид- и кремнефторид-ионов на фильтрующие свойства неразложившегося остатка, по-видимому, основывается на каталитическом действии фтора в данных формах, на процессы полимеризации и коагуляции SiO2, выделяющейся при вскрытии примесных силикатных минералов, в данных условиях проведения разложения каустического магнезита.

Значительное улучшение фильтруемости суспензий достигается при наличии фтора в виде фторид- или (и) кремнефторид-ионов в реакционной массе в количестве более 0,1% в пересчете на фтор по отношению к массе разлагаемого магнезита. Снижение содержания фторид- или (и) кремнефторид-ионов в пересчете на фтор менее 0,1% приводит к резкому снижению фильтруемости суспензий.

При этом повышение фильтруемости суспензий обеспечивается как в присутствии фторид-ионов, так и в присутствии кремнефторид-ионов в реакционной среде, при условии их содержания в пересчете на фтор более 0,1%. Так в примерах 2-23 необходимое содержание фтора в виде фторид-иона обеспечивается за счет его присутствия в качестве примеси в разлагаемом каустическом магнезите - в виде MgF2. В примерах 25-33, когда разлагаемый магнезит не содержит достаточного количества фтора в виде фторид-иона, его необходимое содержание может быть обеспечено введением фторид- или кремнефторид-ионов в виде сторонней добавки, содержащей фторид- или кремнефторид-ионы, например, NaF (фторид-ионы) или фторсодержащего азотнофосфорнокислого раствора - продукта азотнокислотной переработки апатитового концентрата (кремнефторид-ионы). Как показывают приведенные примеры положительный эффект достигается во всех случаях, независимо от того в виде каких соединений фторид- или кремнефторид-ионы вводятся на стадию разложения.

В предлагаемом способе концентрация используемой для разложения каустического магнезита азотной кислоты составляет 42-47%. При снижении концентрации ниже 42% резко ухудшается фильтруемость суспензий нитрата магния, а при значении выше 47% осложняется проведение процесса разложения вследствие выделения значительного количества тепла при одновременном снижении объема реакционной массы.

Оптимальная продолжительность проведения процесса разложения составляет 4-6 часов. Снижение времени разложения менее 4 часов отрицательно сказывается на фильтруемости получаемых суспензий, при этом также может наблюдаться уменьшение степени извлечения MgO. Увеличение продолжительности более 6 часов, в свою очередь, оказывает малое влияние на фильтруемость суспензий и нецелесообразно вследствие значительного увеличения общего времени приготовления магнезиальной добавки.

Верхний предел допустимой температуры разложения ограничен 90°C, так как при ее дальнейшем увеличении температуры резко увеличиваются потери азотной кислоты при незначительном эффекте в отношении фильтруемости суспензий.

Разбавление полученной после проведения разложения суспензии водой до содержания нитрата магния 30-40% и ее выдержка в течение не менее 30 минут при температуре 70-90°C способствует дополнительному улучшению структуры осадка и фильтруемости суспензии. При разбавлении происходит резкое снижение концентрации солей в жидкой фазе, что, по-видимому, способствует стабилизации сформированных частиц кремнезема и снижению вязкости жидкой фазы. Это в результате ведет к дополнительному росту производительности фильтрации суспензии нитрата магния.

Оптимальная степень разбавления водой реакционной массы, полученной на первой стадии, соответствует содержанию 30-40% нитрата магния. При увеличении концентрации нитрата магния выше 40% снижаются фильтрующие свойства суспензии следствии повышения ее вязкости, кроме этого возможна кристаллизация нитрата магния при охлаждении получаемой магнезиальной добавки. Снижение концентрации ниже 30%, в свою очередь, нецелесообразно из-за увеличения количества воды в составе магнезиальной добавки, что потребует дополнительных затрат на ее удаление.

Необходимая температура разбавленной суспензии нитрата магния при ее выдержке перед проведением отделения неразложившегося остатка в заявленном способе составляет 70-90°C. Увеличение температуры выше 90°C нецелесообразно из-за увеличения потерь свободной азотной кислоты, содержащейся в суспензии, снижение температуры ниже 70°C приводит к ухудшению фильтруемости суспензии.

Время выдержки суспензии на второй стадии составляет не менее 30 мин. Уменьшение времени выдержки суспензии ниже заявленного предела ведет к снижению ее фильтруемости.

Осуществление процесса разложения каустического магнезита по предлагаемому способу позволяет улучшить структуру неразложившегося остатка и обеспечивает существенное увеличение производительности фильтрования суспензии нитрата магния.

Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
10.08.2015
№216.013.6b48

Импульсный ионный ускоритель

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с...
Тип: Изобретение
Номер охранного документа: 0002559022
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.77d5

Способ получения магнезиальной добавки

Способ относится к химической технологии получения магнезиальной добавки для производства гранулированной аммиачной селитры и может найти применение при получении магнезиальной добавки с использованием в качестве магнийсодержащего сырья природного брусита. Сущность состоит в том, что при...
Тип: Изобретение
Номер охранного документа: 0002562266
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b77c

Способ получения известково-аммиачной селитры

Изобретение относится к сельскому хозяйству. Способ получения известково-аммиачной селитры включает смешение плава нитрата аммония с карбонатным сырьем в присутствии ингибирующей добавки, гранулирование и охлаждение готового продукта, причем в качестве добавки используют порошок оксида магния,...
Тип: Изобретение
Номер охранного документа: 0002614874
Дата охранного документа: 30.03.2017
Showing 1-10 of 10 items.
10.08.2015
№216.013.6b48

Импульсный ионный ускоритель

Импульсный ионный ускоритель предназначен для получения мощных пучков заряженных частиц. Ускоритель содержит генератор импульсного напряжения (1) и установленные в корпусе основной и предварительный газовые разрядники (4, 7), двойную формирующую линию, средний электрод (3) которой соединен с...
Тип: Изобретение
Номер охранного документа: 0002559022
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.77d5

Способ получения магнезиальной добавки

Способ относится к химической технологии получения магнезиальной добавки для производства гранулированной аммиачной селитры и может найти применение при получении магнезиальной добавки с использованием в качестве магнийсодержащего сырья природного брусита. Сущность состоит в том, что при...
Тип: Изобретение
Номер охранного документа: 0002562266
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.9ffc

Ионный диод с магнитной самоизоляцией

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит...
Тип: Изобретение
Номер охранного документа: 0002606404
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b77c

Способ получения известково-аммиачной селитры

Изобретение относится к сельскому хозяйству. Способ получения известково-аммиачной селитры включает смешение плава нитрата аммония с карбонатным сырьем в присутствии ингибирующей добавки, гранулирование и охлаждение готового продукта, причем в качестве добавки используют порошок оксида магния,...
Тип: Изобретение
Номер охранного документа: 0002614874
Дата охранного документа: 30.03.2017
22.08.2018
№218.016.7e45

Способ получения нанокомпозита

Изобретение относится к химии, электротехнике и нанотехнологии и может быть использовано для разработки анодных материалов литий-ионных батарей нового поколения, а также чувствительных элементов газовых сенсоров. Сначала формируют массив многостенных углеродных нанотрубок (МУНТ) на подложке в...
Тип: Изобретение
Номер охранного документа: 0002664525
Дата охранного документа: 20.08.2018
19.04.2019
№219.017.33f5

Подъемник

Изобретение относится к подъемно-транспортному машиностроению, в частности к подъемникам пантографного типа, и может быть использовано в радиотехнике в качестве мачтового устройства для размещения различного оборудования, например антенн. Подъемник содержит опорную раму и рабочую площадку,...
Тип: Изобретение
Номер охранного документа: 0002463242
Дата охранного документа: 10.10.2012
18.05.2019
№219.017.53cc

Способ получения сложного удобрения с бором

Изобретение относится к сельскому хозяйству. Сложное удобрение с бором получают путем азотнокислотного разложения фосфатного сырья, выделения из раствора разложения части нитрата кальция, нейтрализации раствора аммиаком, упаривания нейтрализованного раствора, введения в плав соли калия и...
Тип: Изобретение
Номер охранного документа: 0002687839
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.6344

Способ окрашивания сложного гранулированного удобрения

Изобретение относится к сельскому хозяйству. Способ окрашивания сложных гранулированных NPK-удобрений включает введение пигмента совместно с хлоридом калия в нитрофосфатный плав, смешение и последующее гранулирование, причем в качестве пигмента используют железную лазурь, которую перед...
Тип: Изобретение
Номер охранного документа: 0002688366
Дата охранного документа: 21.05.2019
12.04.2023
№223.018.49b3

Телескопическая мачта с пакетным выдвижением секций с механизмом подъема на основе цепи

Изобретение относится к грузоподъемным устройствам и может использоваться в мобильных и стационарных установках различного назначения. Телескопическая мачта содержит неподвижную первую секцию и подвижные секции, в состав которых входят замки и упоры, предназначенные для захвата и фиксации...
Тип: Изобретение
Номер охранного документа: 0002760061
Дата охранного документа: 22.11.2021
24.05.2023
№223.018.6faa

Способ генерации импульсного пучка легких ионов

Изобретение относится к способу генерации импульсного пучка легких ионов и может использоваться для технологий радиационно-пучкового модифицирования изделий, а также для инициирования ядерных реакций. Способ включает подачу сдвоенных разнополярных наносекундных импульсов напряжения к...
Тип: Изобретение
Номер охранного документа: 0002795950
Дата охранного документа: 15.05.2023
+ добавить свой РИД