×
10.09.2015
216.013.762a

ЦИКЛ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ДЛЯ ПАРА, ГЕНЕРИРУЕМОГО РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ С НАТРИЕВЫМ ОХЛАЖДЕНИЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002561839
Дата охранного документа
10.09.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к циклу преобразования энергии для пара, генерируемого реактором на быстрых нейтронах с натриевым охлаждением. Цикл имеет первую стадию, на которой первое расширение пара, выходящего из парогенератора, связанного с реактором, осуществляется для приведения пара из исходного состояния «цикла ископаемого топлива» в промежуточное состояние, с температурой и давлением упомянутого пара, соответствующим исходному состоянию «ядерного цикла», вторую стадию, на которой второе расширение пара из промежуточного состояния осуществляется до получения пара в первом влажном состоянии, расположенном ниже кривой насыщения пара, третью стадию, на которой пар подвергают сушке и перегреву, и четвертую стадию, на которой осуществляется третье расширение пара для его приведения из перегретого состояния во второе влажное состояние. Изобретение позволяет повысить срок службы оборудования. 2 н. и 13 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Настоящее изобретение относится к циклу преобразования энергии для преобразования энергии, генерируемой реактором на быстрых нейтронах с натриевым охлаждением (так называемым натриевым реактором на быстрых нейтронах, РБН).

Изобретение относится к ядерной установке, которая содержит, по меньшей мере, ядерный реактор, парогенератор, паровые турбины и осушитель и/или пароперегреватель.

Газообразная или жидкая вода циркулирует по замкнутому контуру через блок и подвергается изменениям температуры и давления.

Термин «цикл» относится к изменениям температуры и давления газообразной или жидкой воды между выходом парогенератора и точкой ее возврата в парогенератор.

Для получения наилучших коэффициентов полезного действия цикла использование реактора на быстрых нейтронах с натриевым охлаждением является благоприятным.

Однако значения температуры и давления на выходе из реактора на быстрых нейтронах с натриевым охлаждением намного выше, чем температуры и давления, которые обычно встречаются в «ядерном цикле» и в способах, с которыми имеют дело в «цикле ископаемого топлива».

Термин «ядерный цикл» соответствует изменениям температуры и давления, встречающимся, как правило, в ядерной установке, которая обычно функционирует с паром, выходящим из парогенератора, причем упомянутый пар находится близко к кривой насыщения.

Термин «цикл ядерного топлива» соответствует изменениям температуры и давления, встречающимся, как правило, на тепловых электростанциях, в которых используются паровые котлы, работающие на ископаемом топливе.

В реакторе на быстрых нейтронах с натриевым охлаждением французской РБН-электростанции Феникс применяют паротурбинную технологию, облегчающую эксплуатацию с использованием пара, работающую при условиях температур и давлений, близких к условиям температур и давлений, встречающихся в «цикле ископаемого топлива», что, таким образом, позволяет пару расширяться при его прохождении через турбину высокого давления и турбину среднего давления в условиях сухого пара.

Условия температуры и давления в различных компонентах установки, а именно в турбинах и пароперегревателе, не должны быть слишком высокими, чтобы срок жизни этих компонентов составлял порядка 60 лет.

Более низкие температуры снижают риск деформации пользучести (пластической деформации) в различных компонентах.

В связи с этим объектом настоящего изобретения является цикл преобразования энергии для пара, генерируемого реактором на быстрых нейтронах с натриевым охлаждением, который повышает срок службы оборудования.

Для осуществления этого предложенный цикл преобразования энергии для пара, генерируемого реактором на быстрых нейтронах с натриевым охлаждением, характеризуется тем, что он имеет:

- первую стадию, на которой первое расширение пара, выходящего из парогенератора, связанного с реактором, осуществляется для приведения пара из исходного состояния «цикла ископаемого топлива» в промежуточное состояние температуры и давления упомянутого пара, соответствующее исходному состоянию «ядерного цикла»,

- вторую стадию, на которой второе расширение пара осуществляется из промежуточного состояния, до получения пара, находящегося в первом влажном состоянии, расположенном ниже кривой насыщения,

- третью стадию, на которой пар подвергается сушке и перегреву, для его приведения из первого влажного состояния в состояние сушки и перегрева, расположенное выше кривой насыщения, и

- четвертую стадию, на которой осуществляют третье расширение пара, для его приведения из перегретого состояния во второе влажное состояние, расположенное ниже кривой насыщения пара, причем пар затем подвергают конденсации и переводят назад в парогенератор.

Цикл реактора на быстрых нейтронах с натриевым охлаждением, заявленный в изобретении, расположен в большей степени в зоне насыщенного пара, чем циклы реакторов на быстрых нейтронах с натриевым охлаждением согласно уровню техники, при работе с теми же условиями температуры и давления непосредственно на выходе из парогенератора, что и условия, близкие к тем, которые встречаются в тепловых электростанциях.

Цикл, заявленный в изобретении, позволяет повышать эффективность по сравнению с эффективностью, достигаемой в настоящее время при использовании реактора на быстрых нейтронах с натриевым охлаждением французской РНБ-электростанции Феникс.

Этот цикл можно использовать для классов реакторов с высокой электроэнергией мощностью более 1500 МВт.

Изобретение позволяет использовать реактор на быстрых нейтронах с натриевым охлаждением со стандартными компонентами, используемыми в настоящее время для станций на ископаемом топливе или на ядерной электроэнергии.

Изобретение, таким образом, дает возможность избежать необходимости внедрения пароперегревателей, таких как пароперегреватели, используемые для реактора на быстрых нейтронах с натриевым охлаждением во французских РНБ-электростанциях, поскольку эти пароперегреватели являются сложными для конструирования и дорогостоящими для изготовления.

Пар в своем исходном состоянии «цикла ископаемого топлива» присутствует при давлении, находящемся в диапазоне 150-200 бар, и при температуре, находящейся в диапазоне 450-570°C.

Промежуточное состояние задается для давления, находящегося в диапазоне 30-50 бар, и температуре, находящейся в диапазоне 234-300°C.

Пар в своем первом влажном состоянии после второго расширения существует при температуре, находящейся в диапазоне 152-188°C, и при давлении, находящемся в диапазоне 5-12 бар.

Пар в своем состоянии сушки и перегрева существует при температуре, находящейся в диапазоне 215-255°C, и давлении, находящемся в диапазоне 5-12 бар.

Пар в своем конечном состоянии конденсируется при температуре, которая зависит от используемого теплоприемника.

Настоящее изобретение также относится к установке паровой турбины, содержащей реактор на быстрых нейтронах с натриевым охлаждением, для внедрения цикла, заданного ранее, и содержащей также

- по меньшей мере один парогенератор,

- турбину очень высокого давления/температуры, соединенную с парогенератором ядерного реактора, в которой первое расширение пара, выходящего из парогенератора реактора, осуществляется для приведения пара из исходного состояния «цикла ископаемого топлива» в промежуточное состояние температуры и давления упомянутого пара, соответствующее исходному состоянию «ядерного цикла»,

- промежуточную турбину, соединенную с турбиной с очень высоким давлением/температурой и работающую отчасти с насыщенным паром, причем второе расширение пара осуществляется из промежуточного состояния, до получения пара в первом влажном состоянии, расположенном ниже кривой насыщения пара,

- осушитель и пароперегреватель, соединенный с промежуточной турбиной, в которой пар высушивается из его первого влажного состояния, а затем подвергается перегреву, для его приведения в состояние сушки и перегрева, расположенное выше кривой насыщения, и:

- выходные турбины, соединенные с осушителем и с пароперегревателем, в которых осуществляется третье расширение пара из его перегретого состояния во второе влажное состояние, причем пар затем конденсируется и переходит назад в парогенератор.

Трубопровод, соединяющий выход, и турбины очень высокого давления и пароперегреватель успешно позволяет нагревать пар, чтобы его можно было вытягивать вниз по потоку относительно турбины очень высокого давления, причем упомянутый пар используется пароперегревателем.

Промежуточная турбина представляет собой турбину высокого давления, а выходные турбины представляют собой паровые турбины среднего и турбины низкого давления, либо только турбины низкого давления. Турбины низкого давления подсоединены параллельно.

Турбина высокого давления и турбина среднего давления (как это существует во втором варианте воплощения) установлены в виде совмещенного агрегата.

Турбина очень высокого давления/температуры и промежуточная турбина установлены таким образом, чтобы они способствовали расширению пара из цикла исходного состояния ископаемого топлива при давлении, находящемся в диапазоне 150-200 бар, и при температуре, находящейся в диапазоне 450-570°C, в состояние влажного пара, температура которого находится в диапазоне 152-188°C и давление которого находится в диапазоне 5-12 бар после первого расширения и второго расширения.

Осушитель и пароперегреватель позволяют пару после второго расширения переходить из исходного состояния влажного пара, температура которого находится в диапазоне 152-188°C и давление которого находится в диапазоне 5-12 бар, в состояние сушки и перегрева, давление при котором находится в диапазоне 5-12 бар, а температура находится в диапазоне 215-255°C.

Турбина очень высокого давления/температуры, промежуточная турбина и выходные турбины (без турбины среднего давления) вращают при частоте сети, например, 3000 оборотов в минуту, входной вал генератора переменного тока, который генерирует электроэнергию менее 1200 МВт.

Турбина очень высокого давления/температуры, промежуточная турбина и выходные турбины (с турбиной среднего давления) вращают при половине частоты сети, например, 1500 оборотов в минуту, входной вал генератора переменного тока, который генерирует электроэнергию более 1200 МВт.

Изобретение будет лучше понято, а его преимущества станут более ясными при прочтении следующего подробного описания, приведенного в виде неограничивающего примера, со ссылкой на приложенные чертежи, на которых:

фиг.1 схематически изображает первый вариант воплощения реактора на быстрых нейтронах с натриевым охлаждением РБН;

фиг.2 схематически изображает второй вариант воплощения реактора на быстрых нейтронах с натриевым охлаждением РБН;

фиг.3 изображает энтальпийную диаграмму, также называемую диаграммой Молье, показывающую на кривой A пример, близкий к части цикла, используемого в реакторе на быстрых нейтронах с натриевым охлаждением французской РБН-электростанции Феникс, а на кривой B - пример части цикла, как заявлено в изобретении, используемом в реакторе на быстрых нейтронах с натриевым охлаждением.

Цикл, заявленный в изобретении, как показано на фиг. 3, может быть воплощен в виде двух различных установок паровых турбин, каждая из которых представляет собой ядерный реактор 1, 1′ на быстрых нейтронах с натриевым охлаждением, который позволяет высвобождать энергию для генерирования пара в парогенератор 2, 2′, турбину 3, 3′ очень высокого давления/температуры, промежуточную турбину 4, 3′′ и выходные турбины 5, 4′, 5′, причем эти турбины являются пригодными для вращения входного вала 6a, 6a′ генератора 6, 6′ переменного тока, который генерирует электричество.

Турбина 3, 3′ очень высокого давления/температуры (фиг.1 и фиг.2) соединена с одним или несколькими парогенераторами 2, 2′ ядерного реактора 1, 1′ посредством одного или нескольких трубопроводов и позволяет осуществлять первое расширение пара для его приведения из исходного состояния «цикла ископаемого топлива» на выходе из парогенератора 2, 2′ реактора 1, 1′ в промежуточное состояние температуры и давления пара, характерное для исходного состояния «ядерного цикла».

Клапаны V, V′ позволяют отрегулировать скорость потока пара, выходящего из парогенератора (парогенераторов) 2, 2′.

В первом варианте воплощения, показанном на фиг.1, промежуточная турбина представляет собой турбину 4 высокого давления, соединенную трубопроводом с турбиной 3 очень высокого давления/температуры, работающей в основном с насыщенным паром.

Турбина 4 высокого давления позволяет осуществлять второе расширение пара из промежуточного состояния, соответствующего исходному состоянию «ядерного цикла», до получения пара, находящегося в первом влажном состоянии, под кривой насыщения S.

Сушку и перегрев пара затем осуществляют путем его последовательного пропускания в осушитель 7, физического разделения жидкой воды и пара, а затем - в пароперегреватель 8, причем эти устройства расположены в трубопроводе 12 между турбиной 4 высокого давления и турбинами 5 низкого давления.

Пароперегреватель 8, расположенный ниже по потоку относительно осушителя 7 и выше по потоку относительно турбин 5 низкого давления, и вытягивание пара, выходящего из турбины 3 очень высокого давления/температуры, позволяет перегревать пар для его приведения в перегретое состояние, расположенное выше кривой насыщения S. Трубопровод 13, соединяющий выход из турбины 3 очень высокого давления и пароперегреватель 8, позволяет вытягивать нагретый пар, который используется в пароперегревателе 8, расположенном ниже по потоку относительно турбины 3 очень высокого давления.

Две турбины 5 низкого давления, установленные параллельно и соединенные с осушителем 7 и с пароперегревателем 8 трубопроводом 12, позволяют осуществлять третье расширение пара из его перегретого состояния в его конечное состояние. Для осуществления этого третьего расширения можно использовать более двух турбин 5 низкого давления.

Воду, восстановленную из осушителя 7 и из пароперегревателя 8, направляют назад в цикл по трубопроводам 11.

Система 9, 10 конденсаторов, подогревателей и насосов используется для помещения сконденсированного пара в парогенератор 2, но не описана в настоящей работе и известна из уровня техники.

Эта установка может генерировать электроэнергию мощностью порядка 600-1200 МВт.

Во втором варианте воплощения, показанном на фиг.2, промежуточная турбина представляет собой турбину 3′′ высокого давления, соединенную трубопроводом с турбиной 3′ очень высокого давления/температуры, работающей в основном с насыщенным паром.

Турбина 3′′ высокого давления позволяет осуществлять второе расширение пара из промежуточного состояния, соответствующего исходному состоянию «ядерного цикла», до получения пара в первом влажном состоянии под кривой насыщения S.

Сушку и перегрев пара затем осуществляют путем последовательного пропускания упомянутого пара в осушитель 7, физически разделяющий жидкую воду и пар, затем в пароперегреватель 8, причем эти устройства расположены в трубопроводах между турбиной 3′′ высокого давления и турбиной 4′ среднего давления.

Пароперегреватель 8′, расположенный ниже по потоку относительно осушителя 7′ и выше по потоку относительно турбины 4′ среднего давления, и вытягивание пара, покидающего турбину 3′ очень высокого давления/температуры, позволяют подвергать пар перегреву для приведения упомянутого пара в перегретое состояние выше кривой насыщения S.

Трубопровод 13′, соединяющий выход из турбины 3′ очень высокого давления и пароперегреватель 8′, позволяет вытягивать нагретый пар вниз по потоку относительно турбины 3′ очень высокого давления, используемой пароперегревателем 8′.

На фиг.2 показано, что турбина 3′′ высокого давления и турбина 4′ среднего давления расположены в виде одного комбинированного блока.

Турбина 4′ среднего давления и две турбины 5′ низкого давления, установленные параллельно и соединенные с турбиной 4′ среднего давления трубопроводом 12′, позволяют осуществлять третье расширение пара из его перегретого состояния в конечное состояние. Для генерирования этого третьего расширения можно использовать более двух турбин 5′ низкого давления.

Воду, восстановленную на уровне осушителя 7′ и из пароперегревателя 8′, направляют назад в цикл по трубопроводам 11′.

Система 9′, 10′, состоящая из конденсатора, подогревателей и насосов, используется для помещения сконденсированного пара в парогенератор 2′, но она не описана в настоящей работе, поскольку известна из уровня техники.

Как показано на фиг.3, на диаграмме Молье энтропия представлена по абсциссе, а энтальпия текучей среды - по ординате.

В частности, это позволяет текучей среде изменять состояние в зависимости от температуры и давления.

Здесь текучая среда представляет собой воду, и на этой диаграмме показана кривая насыщения S воды.

Кривая насыщения S соответствует границе между двумя областями, где вода принимает при данной энтропии форму сухого пара для более высоких энтальпий, чем энтальпия кривой насыщения S, и форму насыщенного пара (или влажного пара) для энтальпий меньших, чем энтальпия кривой насыщения S. Наименование сухого насыщенного пара дано состоянию воды лишь на кривой насыщения S. Содержание воды во влажном паре повышается с понижением энтальпии, до достижения содержания воды, равного 1, при конденсации всей паровой фазы, с образованием жидкой воды.

Иными словами, кривая насыщения S разграничивает область насыщенного влажного пара S2 и газовую область сухого, перегретого пара S1.

Кривая А отображает цикл, аналогичный циклу, используемому в реакторе на быстрых нейтронах с натриевым охлаждением, работающим на французской РБН-электростанции Феникс.

Кривая B отображает цикл, используемый в реакторе РБН на быстрых нейтронах с натриевым охлаждением, заявленном в изобретении.

В цикле, представленном кривой А согласно уровню техники, пар, выходящий из одного или нескольких парогенераторов реактора, находится при температуре примерно 500°C и при давлении порядка 180 бар.

После первого расширения в турбине очень высокого давления между точками 11 и 12 пар находится при температуре порядка 250°C и при давлении порядка 30 бар.

Пар затем подвергают перегреву до точки 13. Между точками 12 и 13 температура повышается от 250°C до 380°C, тогда как давление остается постоянным, на уровне порядка 30 бар.

Пар затем расширяется до точки 14 при помощи турбины среднего давления. Между точками 13 и 14 давление понижается от 30 бар до 5 бар, а температура понижается от 380°C до 180°C.

Пар затем расширяется вплоть до точки 15 при помощи турбины низкого давления.

Конденсатор и системы теплообменников и насосов затем позволяют повторно вводить сконденсированный пар в парогенератор или генераторы реактора.

В цикле, заявленном в изобретении, как показано на фиг.3, пар, выходящий из парогенератора или генераторов 2, 2′ реактора 1, 1′, находится при температуре примерно 500°C и при давлении примерно 180 бар, причем это исходное состояние показано в виде точки 21, которая совпадает с точкой 11.

Но в «ядерном цикле» исходная точка обычно находится близко к кривой насыщения S.

Поэтому первое расширение приводит пар, который находится при температуре 500°C и при давлении 180 бар при точке 21, в промежуточное состояние с температурой и давлением, соответствующим точке 22, со свойствами, близкими к исходной точке «традиционного ядерного цикла».

Первое расширение, таким образом, приводит пар из точки 21 в точку 22, соответствующую исходному состоянию «ядерного цикла», расположенную выше кривой насыщения S.

В точке 22 пар фактически находится при температуре 280°C и при давлении 40 бар (фиг.3).

Пар расширяется между точкой 22 и точкой 23, где он находится в первом влажном состоянии.

В точке 23 пар фактически находится при температуре 170°C и при давлении 7 бар.

Пар подвергают сушке и перегреву для приведения его из первого влажного состояния при точке 23 в первое сухое и перегретое состояние, представленное точкой 24, при этом давление остается фактически постоянным.

В точке 24 пар фактически находится при температуре 240°C и при давлении 7 бар.

Пар затем расширяется в диапазоне между точкой 24 и конечной точкой 25.

В точке 25 пар фактически находится при температуре 35°C и при давлении 60 мбар.

Эти значения приведены лишь в качестве примера и зависят от состояний пара, заданных в источнике тепла в точке 21 и в теплоприемнике в точке 25.

Для точки 21 можно установить, что пар в исходном состоянии «цикла ископаемого топлива» находится при температуре, находящейся в диапазоне 450-570°C и при давлении, находящемся в диапазоне 150-200 бар.

Для точки 22 можно установить, что пар после второго расширения находится при температуре, находящейся в диапазоне 234-300°C и при давлении, находящемся в диапазоне 30-50 бар.

Для точки 23 можно установить, что пар после второго расширения в первом влажном состоянии находится при температуре, находящейся в диапазоне 152-188°C и давлении, находящемся между 5-12 бар.

Для точки 24 можно установить, что после сушки и перегрева пар существует при температуре, находящейся в диапазоне 215-255°C, и давлении, находящемся в диапазоне между 5-12 бар.

Для точки 25 после третьего расширения пар во втором влажном состоянии конденсируется при температуре, которая зависит от теплоприемника, используемого для реактора.


ЦИКЛ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ДЛЯ ПАРА, ГЕНЕРИРУЕМОГО РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ С НАТРИЕВЫМ ОХЛАЖДЕНИЕМ
ЦИКЛ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ДЛЯ ПАРА, ГЕНЕРИРУЕМОГО РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ С НАТРИЕВЫМ ОХЛАЖДЕНИЕМ
ЦИКЛ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ДЛЯ ПАРА, ГЕНЕРИРУЕМОГО РЕАКТОРОМ НА БЫСТРЫХ НЕЙТРОНАХ С НАТРИЕВЫМ ОХЛАЖДЕНИЕМ
Источник поступления информации: Роспатент

Showing 1-10 of 218 items.
10.04.2013
№216.012.325c

Способ и устройство для управления электростатическим пылеуловителем

Изобретение относится к способу и устройству управления работой электростатического пылеуловителя, который выполнен с возможностью удаления частиц пыли из технологического газа. Способ управления работой электростатического пылеуловителя, ESP, который выполнен с возможностью удаления частиц...
Тип: Изобретение
Номер охранного документа: 0002478435
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ee

Ротор для электродинамической машины

Ротор для электродинамической машины, в частности для гидрогенератора, содержит корпус, который собран из множества расположенных в аксиальном направлении друг за другом сегментов (10) из листового металла, между сегментами (10) для образования охлаждающих каналов установлены установочные...
Тип: Изобретение
Номер охранного документа: 0002479093
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ef

Ротор электрической машины

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения роторов электрических машин, в частности гидрогенераторов. Предлагаемый ротор (10) электрической машины содержит ярмо (12) с распределенными по внешней периферии осевыми пазами (13), в которые...
Тип: Изобретение
Номер охранного документа: 0002479094
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.3fb7

Система и способ регенерации раствора абсорбента

Изобретение относится к системе и способу регенерации раствора абсорбента, используемого в абсорбции кислотного компонента из технологического потока. Система включает пар, производимый бойлером; множество турбин, соединенное по текучей среде с бойлером; механизм перекачивания для...
Тип: Изобретение
Номер охранного документа: 0002481881
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fb8

Улучшенная промотором система на основе охлажденного аммиака и способ удаления co из потока дымового газа

Изобретение относится к способу поглощения CO из газового потока, указанный способ включает: контактирование потока дымового газа, содержащего CO, с обедненным раствором поглотителя, причем обедненный раствор поглотителя содержит аммиаксодержащий ионный раствор или суспензию, основанные на...
Тип: Изобретение
Номер охранного документа: 0002481882
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fc6

Способ оценки пылевой нагрузки электрофильтра и способ и устройство управления встряхиванием электрофильтра

Изобретение относится к способу управления встряхиванием электродов электрофильтра и оценки текущей нагрузки частиц пыли на осадительные электроды. Способ управления встряхиванием, по меньшей мере, одного осадительного пластинчатого электрода (30) электрофильтра (1), в котором подают при помощи...
Тип: Изобретение
Номер охранного документа: 0002481896
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.4518

Универсальный узел рекуператора для отработавших газов газовой турбины

Изобретение относится к теплотехнике. Рекуператор включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод; а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа и образованную множеством первых однорядных трубно-коллекторных узлов и...
Тип: Изобретение
Номер охранного документа: 0002483265
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45ac

Электрическая машина, в частности трехфазный асинхронный гидрогенератор

Изобретение относится к области электротехники и касается выполнения электрических машин, в частности трехфазного асинхронного гидрогенератора, с ротором и статором, а также с обмоткой, включающей множество проходящих в осевом направлении, лежащих друг над другом в соответствующих пазах обмотки...
Тип: Изобретение
Номер охранного документа: 0002483413
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.471c

Система и способ регенерации раствора абсорбента

Система абсорбирования из технологического потока кислотного компонента. Система включает: технологический поток, содержащий кислотный компонент; раствор абсорбента для абсорбирования из технологического потока, по меньшей мере, части кислотного компонента, где раствор абсорбента содержит...
Тип: Изобретение
Номер охранного документа: 0002483784
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.471d

Система и способ удаления кислотного компонента из технологического потока

Система для абсорбции и тем самым удаления, по меньшей мере, части кислотного компонента из технологического потока. Система включает абсорбер, предназначенный принимать технологический поток, в котором абсорбер использует абсорбирующий раствор, для абсорбирования кислотного компонента из...
Тип: Изобретение
Номер охранного документа: 0002483785
Дата охранного документа: 10.06.2013
Showing 1-10 of 207 items.
10.04.2013
№216.012.325c

Способ и устройство для управления электростатическим пылеуловителем

Изобретение относится к способу и устройству управления работой электростатического пылеуловителя, который выполнен с возможностью удаления частиц пыли из технологического газа. Способ управления работой электростатического пылеуловителя, ESP, который выполнен с возможностью удаления частиц...
Тип: Изобретение
Номер охранного документа: 0002478435
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ee

Ротор для электродинамической машины

Ротор для электродинамической машины, в частности для гидрогенератора, содержит корпус, который собран из множества расположенных в аксиальном направлении друг за другом сегментов (10) из листового металла, между сегментами (10) для образования охлаждающих каналов установлены установочные...
Тип: Изобретение
Номер охранного документа: 0002479093
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ef

Ротор электрической машины

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения роторов электрических машин, в частности гидрогенераторов. Предлагаемый ротор (10) электрической машины содержит ярмо (12) с распределенными по внешней периферии осевыми пазами (13), в которые...
Тип: Изобретение
Номер охранного документа: 0002479094
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.3fb7

Система и способ регенерации раствора абсорбента

Изобретение относится к системе и способу регенерации раствора абсорбента, используемого в абсорбции кислотного компонента из технологического потока. Система включает пар, производимый бойлером; множество турбин, соединенное по текучей среде с бойлером; механизм перекачивания для...
Тип: Изобретение
Номер охранного документа: 0002481881
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fb8

Улучшенная промотором система на основе охлажденного аммиака и способ удаления co из потока дымового газа

Изобретение относится к способу поглощения CO из газового потока, указанный способ включает: контактирование потока дымового газа, содержащего CO, с обедненным раствором поглотителя, причем обедненный раствор поглотителя содержит аммиаксодержащий ионный раствор или суспензию, основанные на...
Тип: Изобретение
Номер охранного документа: 0002481882
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fc6

Способ оценки пылевой нагрузки электрофильтра и способ и устройство управления встряхиванием электрофильтра

Изобретение относится к способу управления встряхиванием электродов электрофильтра и оценки текущей нагрузки частиц пыли на осадительные электроды. Способ управления встряхиванием, по меньшей мере, одного осадительного пластинчатого электрода (30) электрофильтра (1), в котором подают при помощи...
Тип: Изобретение
Номер охранного документа: 0002481896
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.4518

Универсальный узел рекуператора для отработавших газов газовой турбины

Изобретение относится к теплотехнике. Рекуператор включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод; а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа и образованную множеством первых однорядных трубно-коллекторных узлов и...
Тип: Изобретение
Номер охранного документа: 0002483265
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45ac

Электрическая машина, в частности трехфазный асинхронный гидрогенератор

Изобретение относится к области электротехники и касается выполнения электрических машин, в частности трехфазного асинхронного гидрогенератора, с ротором и статором, а также с обмоткой, включающей множество проходящих в осевом направлении, лежащих друг над другом в соответствующих пазах обмотки...
Тип: Изобретение
Номер охранного документа: 0002483413
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.471c

Система и способ регенерации раствора абсорбента

Система абсорбирования из технологического потока кислотного компонента. Система включает: технологический поток, содержащий кислотный компонент; раствор абсорбента для абсорбирования из технологического потока, по меньшей мере, части кислотного компонента, где раствор абсорбента содержит...
Тип: Изобретение
Номер охранного документа: 0002483784
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.471d

Система и способ удаления кислотного компонента из технологического потока

Система для абсорбции и тем самым удаления, по меньшей мере, части кислотного компонента из технологического потока. Система включает абсорбер, предназначенный принимать технологический поток, в котором абсорбер использует абсорбирующий раствор, для абсорбирования кислотного компонента из...
Тип: Изобретение
Номер охранного документа: 0002483785
Дата охранного документа: 10.06.2013
+ добавить свой РИД