×
27.05.2013
216.012.4518

УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002483265
Дата охранного документа
27.05.2013
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплотехнике. Рекуператор включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод; а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа и образованную множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов. Каждый из множества первых однорядных трубно-коллекторных узлов, включающих множество первых генераторных теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды; а также содержит впускной коллектор, соединенный с впускным трубопроводом. Каждый из множества вторых однорядных трубно-коллекторных узлов, включающих множество вторых теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды, поступающего из соответствующих первых теплообменных труб; а также содержит выпускной коллектор, соединенный с выпускным трубопроводом. Каждый из впускных коллекторов соединен с впускным трубопроводом по меньшей мере одной соответствующей трубой из множества первых соединительных труб, а каждый из выпускных коллекторов соединен с выпускным трубопроводом по меньшей мере одной соответствующей трубой из множества вторых соединительных труб. Технический результат - быстрый нагрев и охлаждение, увеличение ресурса работы. 3 н. и 19 з.п. ф-лы, 8 ил.
Реферат Свернуть Развернуть

Область техники

Настоящее изобретение относится к рекуператорам, и в частности к нагреву сжатого воздуха в рекуператоре, выполненном с возможностью рекуперации энергии отработавших газов газовой турбины широкого применения.

Уровень техники

Теплообмен между нагретым газом и сжатым воздухом при атмосферном давлении осуществляется в рекуператоре, имеющем множество типовых конструкций. Применяемые в крупногабаритных системах для рекуперации тепла, например, для рекуперации тепла потока отработавших газов газовой турбины широкого применения, серийные конструкции рекуператоров имеют ограничения по размерам и малопригодны для ремонта. Тепло отработавших газов газовой турбины можно использовать для нагрева сжатого воздуха, хранимого с целью выработки электроэнергии в установках с накоплением энергии с помощью сжатого воздуха (НЭСВ) или других процессах, где необходим нагретый сжатый воздух.

Системы с НЭСВ накапливают энергию с помощью сжатого воздуха, находящегося в каверне, в течение периодов неполной нагрузки. Электроэнергия вырабатывается в периоды пика нагрузки за счет передачи сжатого воздуха из каверны в одну или несколько турбин с помощью рекуператора. Силовая установка включает в себя по меньшей мере одну камеру сжигания, позволяющую нагреть сжатый воздух до нужной температуры. Для удовлетворения потребностей в электроэнергии при полной нагрузке, необходимо запускать НЭСВ блок несколько раз в неделю. Для выполнения требования по нагрузке, данная силовая установка должна обладать возможностью быстрого запуска, чтобы соответствовать требованиям рынка энергоснабжения. Однако быстрые изменения нагрузки при быстром запуске приводят к температурным напряжениям, которые в свою очередь вызваны в силовой установке за счет нестационарного режима теплообмена. Это отражается на сроке службы силовых установок, так как усиление нестационарных режимов теплообмена приводит к повышенному износу установок. Для таких видов применения физический объем теплообменников и высокие температурные напряжения, связанные с быстрым нагревом рекуператора во время быстрого запуска, превысили возможности обычного рекуперационного оборудования.

Общим для всех воздушных рекуператоров с регенерацией тепла (ВРРТ) является то, что температура потока отработавших газов снижается при движении от места забора отработавших газов до места их выпуска из теплообменника. Количество теплоты, передаваемое в каждый ряд теплообменных труб, через которые проходят отработавшие газы, пропорционально разности температур отработавших газов и текучей среды в теплообменных трубах. В связи с этим через каждый следующий ряд теплообменных труб в направлении потока отработавших газов передается меньшее количество теплоты, и поток тепла, передаваемого от отработавших газов к текучей среде внутри трубы (например, сжатый воздух), в каждом следующем ряду труб при движении от места забора отработавших газов до места их выпуска из рекуператора уменьшается. Поэтому в каждом следующем ряду теплообменных труб в направлении газового потока температура металла трубы определяется как количеством тепла, передаваемого вдоль стенки трубы, так и средним значением температуры внутри трубы.

К примеру, в обычных рекуператорах температура металла теплообменной трубы определяется как количеством тепла, передаваемого вдоль стенки теплообменной трубы, так и средним значением температуры среды внутри теплообменной трубы. Поскольку поток тепла при движении от места забора отработавших газов до места их выпуска из рекуператора уменьшается, температура металла теплообменных труб различна для каждого ряда теплообменных труб, имеющихся в рекуператоре.

Каждый трубопровод (коллектор) горизонтального воздушного рекуператора с регенерацией тепла (ВРРТ), поток которого движется перпендикулярно потоку отработавших газов, действует как место сбора множества рядов труб. Эти коллекторы имеют относительно большой диаметр и толщину, что позволяет разместить несколько рядов труб. Фиг.1a и 1b изображают два вида такого узла 100, называемого "многорядный трубно-коллекторный узел", который используется в типовых теплообменниках. Данный узел состоит из коллектора 101 и рядов труб 105A-105C. Как показано на фиг.1, каждый отдельный ряд труб 105A-105C содержит множество труб. Для большей ясности на фиг.1b изображено только по одной трубе каждого ряда труб 105A-105C. Поскольку температуры отельных рядов труб 105A-105C различны, механические силы, возникающие из-за температурных напряжений, имеют разные значения для каждого ряда труб. Различные тепловые расширения приводят к возникновению напряжений в изгибах труб и местах соединения отдельных труб с коллектором 101. Кроме того, еще одной причиной возникновения температурных напряжений в местах соединения отдельных труб с коллектором 101 является различие в толщине относительно тонкостенных труб и толстостенного коллектора 101. При определенных рабочих условиях эти напряжения могут привести к возникновению дефекта в месте соединения, особенно если узел 100 подвергается большому числу циклов нагрева и охлаждения. Поэтому существует необходимость создания универсального рекуператора, который сможет обеспечить как быстрый нагрев и охлаждение, так и большое число стартстопных циклов.

Сущность изобретения

В соответствии с аспектами (изобретения), рассматриваемыми в данном документе, предлагается рекуператор, который включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод; а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа. Прямоточная поверхность нагрева образована множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов. Каждый из множества первых однорядных трубно-коллекторных узлов, включающих множество первых генераторных теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды через них; а также содержит впускной коллектор, соединенный с впускным трубопроводом. Каждый из множества вторых однорядных трубно-коллекторных узлов, включающих множество вторых генераторных теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды через них из соответствующих первых генераторных теплообменных труб; а также содержит выпускной коллектор, соединенный с выпускным трубопроводом. Каждый из впускных коллекторов соединен с впускным трубопроводом соответствующей по меньшей мере одной трубой из множества первых соединительных труб, а каждый из выпускных коллекторов соединен с выпускным трубопроводом соответствующей по меньшей мере одной трубой из множества вторых соединительных труб. Каждая из теплообменных труб каждого из первых и вторых однорядных трубно-коллекторных узлов имеет внутренний диаметр меньше, чем внутренний диаметр любой из вышеуказанного множества первых соединительных труб и любой из вышеуказанного множества вторых соединительных труб.

В соответствии с другими аспектами, рассматриваемыми в данном документе, предлагается система с НЭСВ. Данная система с НЭСВ включает в себя каверну для хранения сжатого воздуха; силовую установку, содержащую ротор и один или несколько турбодетандеров; а также систему, обеспечивающую силовую установку сжатым воздухом из каверны и включающую в себя рекуператор для предварительного нагрева сжатого воздуха перед его поступлением в один или несколько турбодетандеров, и первый клапанный механизм, который управляет потоком предварительно нагретого воздуха от рекуператора к силовой установке. Рекуператор включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод; а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа. Прямоточная поверхность нагрева образована множеством первых однорядных трубно-коллекторных узлов и множеством вторых однорядных трубно-коллекторных узлов. Каждый из множества первых однорядных трубно-коллекторных узлов, включающих множество первых генераторных теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды через них; а также содержит впускной коллектор, соединенный с впускным трубопроводом. Каждый из множества вторых однорядных трубно-коллекторных узлов, включающих множество вторых генераторных теплообменных труб, соединен параллельно для прохождения сквозного потока текучей среды через них из соответствующих первых генераторных теплообменных труб; а также содержит выпускной коллектор, соединенный с выпускным трубопроводом. Каждый из впускных коллекторов соединен с впускным трубопроводом соответствующей по меньшей мере одной трубой из множества первых соединительных труб, а каждый из выпускных коллекторов соединен с выпускным трубопроводом соответствующей по меньшей мере одной трубой из множества вторых соединительных труб. Каждая из теплообменных труб каждого из первых и вторых однорядных трубно-коллекторных узлов имеет внутренний диаметр меньше, чем внутренний диаметр любой из множества первых соединительных труб и любой из вышеуказанного множества вторых соединительных труб.

В соответствии с еще одними аспектами, рассматриваемыми в данном документе, предлагается устройство для нагрева сжатого воздуха, выполненное с возможностью рекуперации энергии отработавших газов газовой турбины широкого назначения. Эта установка включает в себя канал для нагретого газа; впускной трубопровод; выпускной трубопровод, а также прямоточную поверхность нагрева, расположенную в канале для нагретого газа, через который проходит поток нагретого газа. Прямоточная поверхность нагрева образована множеством однорядных трубно-коллекторных узлов. Каждый из множества однорядных трубно-коллекторных узлов включает множество генераторных теплообменных труб, соединенных параллельно для прохождения сквозного потока текучей среды; а также содержит впускной коллектор, соединенный с впускным трубопроводом. Каждый из множества однорядных трубно-коллекторных узлов соединен с выпускным трубопроводом. Каждый из впускных коллекторов соединен с впускным трубопроводом соответствующей по меньшей мере одной трубой из множества соединительных труб. Каждая из теплообменных труб из однорядных трубно-коллекторных узлов имеет внутренний диаметр меньше, чем внутренний диаметр любой из множества соединительных труб.

Другие отличительные признаки (изобретения), на ряду с описанными выше, показаны на примере следующих фигур и их подробного описания.

Краткое описание чертежей

Примерные варианты осуществления рассмотрены с ссылками на фигуры, где одинаковые элементы имеют одинаковые ссылочные позиции.

Фиг.1a - общий вид многорядного трубно-коллекторного узла, используемого в воздушном рекуператоре с регенерацией тепла (ВРРТ) известного уровня техники;

Фиг.1b - вид спереди многорядного трубно-коллекторного узла, показанного на фиг.1a;

Фиг.2 - общий вид спереди многоярусного слоя элементов, включающего однорядный трубно-коллекторный узел для воздушного рекуператора с регенерацией тепла (ВРРТ) в соответствии с вариантом-примером осуществления настоящего изобретения;

Фиг.3 - вид спереди фиг.2;

Фиг.4 - вид сбоку фиг.2;

Фиг.5 - общий вид спереди модуля воздушного рекуператора с регенерацией тепла (ВРРТ) в соответствии с вариантом-примером осуществления настоящего изобретения;

Фиг.6 - увеличенный общий вид верхней части модуля, изображенного на фиг.5;

Фиг.7 - вертикальный вид сбоку примера рекуператорного узла, содержащего 5 модулей воздушного рекуператора с регенерацией тепла (ВРРТ), собранных вместе и расположенных в канале для нагретого газа в соответствии с вариантом-примером осуществления настоящего изобретения; и

Фиг.8 - схема системы с НЭСВ, в которой используется узел рекуператора, изображенный на фиг.7.

Подробное описание

Изображенный на фиг.2-4 многоярусный слой элементов, включающий однорядный трубно-коллекторный узел 200, который не подвержен разрушениям при изгибе и в местах соединения труб с коллектором, причиной которых являются рассмотренные выше температурные напряжения, используется в прямоточном горизонтальном воздушном рекуператоре с регенерацией тепла (ВРРТ). Фиг.3 и 4 - общий вид спереди и сбоку вида в перспективе многоярусного слоя элементов, включающего однорядный трубно-коллекторный узел 200, который изображен на фиг.2. Для большей ясности фиг.2 изображает только внешние коллекторы, каждый из которых имеет по одному ряду труб. Однако многоточия на фиг.2 обозначают, что каждый коллектор содержит по одному ряду труб. В частности узел 200 включает в себя первое множество рядов 201A-201F труб (например, "первые ряды труб"), причем каждая из труб первого ряда соединена с соответствующим первым общим (или впускным) коллектором 205A-205F. Таким образом, ряд 201A труб соединен с общим коллектором 205A, ряд 201B труб соединен с общим коллектором 205B и т.д. до ряда 201F труб, который соединен с общим коллектором 205F. Кроме того узел 200 включает в себя второе множество рядов 201G-201L труб (например, "вторые ряды труб"), причем каждая из труб второго ряда соединена с соответствующим вторым общим (или выпускным) коллектором 205G-205L. Таким образом, ряд 201G труб (не показан) соединен с общим коллектором 205G, ряд 201H труб (не показан) соединен с общим коллектором 205H и т.д. до ряда 201L труб, который соединен с общим коллектором 205L. Каждый из общих коллекторов 205A-205L расположен вдоль оси y, а каждый из первых рядов 201A-201L труб - вдоль оси z, как показано на фигуре. Компоновку, подобную рассмотренной выше, можно называть "многоярусный слой элементов, включающий однорядный трубно-коллекторный узел", который описан далее.

Каждый из коллекторов 205A-205F соединен с по меньшей мере одним собирающим трубопроводом (или впускным трубопроводом) 215 (показаны два) по меньшей мере одной соединительной трубой 220A-220F (в качестве примера показаны четыре первых соединительных трубы 220A). Таким образом, коллектор 205A соединен с собирающим трубопроводом 215 соединительной трубой 220A, коллектор 205B соединен с собирающим трубопроводом 215 соединительной трубой 220B и т.д. до коллектора 205F, который соединен с собирающим трубопроводом 215 соединительной трубой 220F. Каждый из собирающих трубопроводов 215 расположен вдоль оси x, как показано на фигуре.

В данной конструктивной схеме трубы из ряда 201A-201F соединены с соответствующими коллекторами 205A-205F относительно малого диаметра и с меньшей толщиной стенки по сравнению с большим трубопроводом 215, изображенном на фиг.2-4. Подобную компоновку применительно к трубно-коллекторному узлу в сборе можно назвать "однорядный трубно-коллекторный узел". Малые коллекторы 205A-205F в свою очередь соединены с по меньшей мере одним собирающим трубопроводом 215 при помощи труб, которые можно назвать соединительными трубами 220A-220F. Совокупность труб 201A-201F, малых коллекторов 205A-205F, соединительных труб 220A-220F и больших собирающих трубопроводов называется "многоярусный слой элементов, включающий однорядный трубно-коллекторный узел 230".

Аналогично каждый из коллекторов 205G-205L соединен с по меньшей мере одним собирающим трубопроводом (или выпускным трубопроводом) 225 (показаны два) по меньшей мере одной соединительной трубой 220G-220L (в качестве примера показаны четыре первых соединительных трубы 220G). Таким образом, коллектор 205G соединен с собирающим трубопроводом 225 соединительной трубой 220G, коллектор 205H соединен с собирающим трубопроводом 225 соединительной трубой 220H и т.д. до коллектора 205L, который соединен с собирающим трубопроводом 225 соединительной трубой 220L.

Каждый из коллекторов 205G-205L соединен с по меньшей мере одним собирающим трубопроводом 225 по меньшей мере одной соединительной трубой 220G-220L. Таким образом, коллектор 205G соединен со вторым собирающим трубопроводом 225 второй соединительной трубой 220G и т.д. до коллектора 205L, который соединен со вторым собирающим трубопроводом 225 второй соединительной трубой 220L. Аналогичным образом такая компоновка применительно ко вторым коллекторам 205G-205L и соответствующим трубам 201G-201L относится ко второму однорядному трубно-коллекторному узлу. Подобно рассмотренному выше первому многоярусному слою элементов, включающему однорядный трубно-коллекторный узел 230, данная компоновка может называться "многоярусный слой элементов, включающий однорядный трубно-коллекторный узел 240".

Каждая из труб ряда 201A-201L имеет диаметр меньше, чем диаметр каждого из общих коллекторов 205A-205L и каждой соединительной трубы 220A-220L. Каждый общий коллектор 205A-205L имеет меньший диаметр и меньшую толщину стенки по сравнению с каждым собирающим трубопроводом 215.

Такая конструкция позволяет избежать высоких концентраций напряжений в изгибах и соединительных местах труб при нагреве и охлаждении. А именно: нет температурных напряжений, возникающих в изгибах, поскольку все трубы ряда 201A-201L изгибов не имеют. Также отсутствуют изгибные напряжения в местах сварки труб с коллекторами 205A-205L, поскольку нет изгибающего момента, вызываемого изгибами труб при нагреве. Таким образом, однорядные узлы 230 и 240 могут выдерживать значительно большее число циклов нагрева и охлаждения по сравнению с многорядным трубно-коллекторным узлом 100, изображенном на фиг.1 и рассмотренным выше.

Фиг.5 изображает общий вид спереди (ВРРТ) модуля 300 (прямоточная поверхность нагрева), который в соответствии с вариантом-примером осуществления настоящего изобретения содержит первый многоярусный слой элементов, включающий однорядный трубно-коллекторный узел 230 и второй однорядный трубно-коллекторный узел 240, изображенные на фиг.2-4. На схеме (ВРРТ) модуля 300 показано сообщение по текучей среде первого многоярусного слоя элементов, включающего однорядный трубно-коллекторный узел 230, со вторым однорядным трубно-коллекторным узлом 240 посредством верхней части 360 модуля 300.

Изображенная на фиг.6 верхняя часть 360 включает в себя множество третьих общих коллекторов 305A-305L, соединенных с соответствующими рядами 201A-201L труб и, следовательно, входящих в соединение с соответствующими общими коллекторами 205A-205L через соответствующие ряды 201A-201L труб. Кроме того, третьи общие коллекторы 305A-305F находятся в сообщении по текучей среде с соответствующими третьими общими коллекторами 305G-305L с помощью соответствующих третьих соединительных труб 320AL, 320BK, 320CJ, 320DI, 320EH и 320FG соответственно.

Для примера снова обратимся к фиг.5, где текучая среда W (например, сжатый воздух) протекает из впускного отверстия 362 первого трубопровода 215 в первый общий коллектор 205 через соединительную трубу 220A и затем проходит через первый ряд труб 201A в направлении, обозначенном на фиг.5 и 6 стрелкой 364. Затем текучая среда W попадает в соответствующий третий коллектор 305A, а затем в третий коллектор 305L по соединительным трубам 320AL. Далее текучая среда W проходит через соответствующий второй ряд труб 201L во втором направлении, обозначенном на фиг.5 и 6 стрелкой 366. Второй общий коллектор 205L получает текучую среду W из соответствующих труб второго ряда 201L и выводит ее через выпускное отверстие 368 второго трубопровода 225, которые соединены второй соединительной трубой 220L. В данном примере модуль (ВРРТ) 300 изображен так, что выпускное отверстие 368 обращено к потоку отработавших газов 370 газовой турбины, (но такое решение не является единственно возможным), а впускное отверстие 362 расположено ниже по потоку отработавших газов 370. Из фиг.4 очевидно, что каждый из трубопроводов 215 и 225 имеет на противоположных концах крышки 372, одна из которых закрывает впускное отверстие 362, а другая соответственно - выпускное отверстие 368.

Теперь обратимся к фиг.7, где изображен один из вариантов осуществления прямоточного горизонтального воздушного рекуператора с регенерацией тепла (ВРРТ) в соответствии с настоящим изобретением, который включает в себя пятнадцать (15) (ВРРТ) модулей 300 (например, не ограничивающим решением является пять секций тройных широких модулей 300), далее обозначаемый как рекуператор 400. Из фигуры видно, что рекуператор 400 расположен ниже по потоку от газовой турбины (не показана) со стороны выхода отработавших газов газовой турбины. Рекуператор 400 имеет окружающую стенку 402, образующую канал 403 для нагретого газа, через который поток нагретого газа может идти практически в горизонтальном направлении, обозначенном стрелкой 370, и который необходим для приема отработавших газов от газовой турбины. (ВРРТ) модули 300 соединены друг с другом последовательно и расположены в канале 403 для нагретого газа. В варианте-примере осуществления на фиг.7 показано 5 модулей 300, соединенных последовательно, но их может быть больше, либо может быть только один модуль 300, что не влияет на сущность изобретения.

Модули 300, одинаковые для соответствующих вариантов осуществления, изображенных на фиг.2-5, имеют несколько первых рядов 201A-201F труб и вторых рядов 201G-201L труб соответственно, которые расположены один за другим в направлении потока нагретого газа. В соответствии с приведенным выше описанием фиг.5 и 6 каждый ряд труб из первых рядов 201A-201F труб соединен с соответствующим рядом труб из второго ряда 201G-201L труб соответствующими соединительными трубами 320, причем первый и второй ряды труб расположены один за другим в направлении потока нагретого газа. На фиг.7 можно видеть только по одной вертикальной теплообменной трубе 201 в каждом ряду 201A-201L труб.

В каждом модуле 300 теплообменные трубы 201 из соответствующих общих рядов 201A-201F труб, принадлежащих к первому ряду труб, параллельно соединяются с соответствующим первым впускным коллектором из 205A-205F, образуя первый впускной однорядный трубно-коллекторный узел, который был рассмотрен при описании фиг.2-5. Также в каждом модуле 300 теплообменные трубы 201 из соответствующих общих рядов 201A-201F труб, принадлежащих к первому ряду труб, соединяются с соответствующим третьим общим выпускным коллектором из 305A-305F, образуя впускной однорядный трубно-коллекторный узел для каждого ряда 201A-201F. Аналогично теплообменные трубы 201 из вторых общих рядов 201G-201L труб второй прямоточной поверхности нагрева параллельно соединяются с соответствующими третьими общими впускными коллекторами 305G-305L, образуя выпускной однорядный трубно-коллекторный узел для каждого ряда 201G-201L, а также параллельно соединяются с соответствующим вторым общим выпускным коллектором из 205G-205L, образуя второй выпускной однорядный трубно-коллекторный узел для каждого ряда 201G-201L. Каждый из соответствующих третьих общих выпускных коллекторов 305A-305F соединен с соответствующим общим впускным коллектором из 305G-305L соответствующей соединительной трубой 320.

Каждый первый впускной однорядный трубно-коллекторный узел из каждого модуля 300 соединяется с впускным трубопроводом 215 посредством первых соединительных труб 220A-220F, в результате образуя первый многоярусный слой элементов с впускным однорядным трубно-коллекторным узлом 230. Также каждый второй выпускной однорядный трубно-коллекторный узел из каждого модуля 300 соединяется с выпускным трубопроводом 225 посредством вторых соединительных труб 220G-220L, тем самым образуя второй многоярусный слой элементов, включающий выпускной однорядный трубно-коллекторный узел 240.

Каждое выпускное отверстие 368 второго трубопровода 225 одного модуля 300 соединено с впускным отверстием 362 первого трубопровода 215 последующего модуля 300 посредством соединителя 274, то есть за исключением первого и последнего модулей 300 имеет место последовательное соединение отверстий. Текучая среда W поступает в первый многоярусный слой элементов, включающий впускной однорядный трубно-коллекторный узел 230 первого модуля 300, проходит по ряду параллельных труб 201A-201F и через третьи соединительные трубы 320A-320L попадает из первого многоярусного слоя элементов, включающего впускной однорядный впускной трубно-коллекторный узел 230 первого модуля 300, во второй многоярусный слой элементов, включающий выпускной однорядный трубно-коллекторный узел 240 первого модуля 300, и выходит через выпускной трубопровод 225. Затем текучая среда W попадает в впускное отверстие 362 второго модуля 300, соединенное с выпускным отверстием 368 первого модуля 300. Впускное отверстие 362 и выпускное отверстие 368 соединены посредством соединителя 274.

Значительное повышение универсальности крупногабаритных рекуператоров может быть достигнуто с помощью узла из теплообменных секций или модулей 300 и собранных на основе конструкции, которая рассмотрена выше на фиг.7 как "многоярусный слой элементов, включающий однорядный трубно-коллекторный узел". Новый узел использует: однорядные трубно-коллекторные узлы во всем рекуператоре для создания схем циркуляции текучей среды в противотоке, требуемых для работы крупногабаритных рекуператоров. как показано на фиг.7.

Крупногабаритный рекуператор, описанный с ссылками на фиг.7, при быстром запуске получает частичный воздушный поток для того, чтобы снизить выброс в атмосферу сжатого воздуха. Теплообменные модули являются полностью дренируемыми и вентилируемыми. Вентиляционные отверстия (не показаны) могут находиться на любой высоте (например, за счет применения резьбовых заглушек), что облегчает техническое обслуживание в будущем. Нижние трубопроводы 215, 225 могут быть установлены с дренажными трубами и спускными клапанами, которые ограничивают снаружи защитный кожух или канал для нагретого газа 403.

Теплообменные модули 300 - это модули полностью заводской сборки с оребренными трубами, коллекторами, защитным кожухом и опорными балками. Теплообменные модули 300 устанавливаются сверху в стальную конструкцию. Трубная вибрация контролируется с помощью доказавших свою пригодность при использовании в парогенераторах-рекуператорах систем зажимов труб 380, которые лучше всего видны на фиг.5. Применение в совокупности двух рассмотренных концепций позволит производить универсальные рекуператоры широкого назначения, которые обеспечат быстрый нагрев и охлаждение, а также большее число стартстопных циклов. К примеру, фиг.8 представляет собой схематичный вид системы с НЭСВ мощностью 150-300 МВт, в которой используется рекуператорный узел, изображенный на фиг.7.

Общий план силовой установки с НЭСВ изображен на фиг.8. Установка включает в себя каверну 1 для хранения сжатого воздуха. Рекуператор 400, как было указано с ссылками на фиг.7, осуществляет предварительный нагрев сжатого воздуха из каверны 1 перед его поступлением в воздушную турбину 3. Предварительный нагрев сжатого воздуха из каверны 1 рекуператором 400 осуществляется за счет потока отработавших газов, идущих в противоположном направлении, к примеру, из газовой турбины 5. После того, как произошла передача тепла холодному сжатому воздуху из каверны 1, отработавший газ выводится из системы через выхлопную трубу 7. Управление потоком воздуха к рекуператору 400 и воздушной турбине 3 осуществляется с помощью клапанных механизмов 8 и 9, соответственно.

В то время как данное изобретение было описано со ссылками на различные варианты-примеры осуществления, специалистам в данной области очевидно, что без ущерба для объема изобретения могут быть внесены некоторые изменения, а элементы изобретения могут быть заменены эквивалентами. В дополнение следует отметить, что многие модификации могут быть созданы для того, чтобы без существенного ущерба для объема изобретения адаптировать конкретную ситуацию или документацию к раскрытию этого изобретения без отклонения от объема охраны. Из этого следует, что приведенный конкретный вариант осуществления, который рассмотрен здесь как лучший предполагаемый вариант осуществления данного изобретения, не должен ограничивать данное изобретение, а оно в свою очередь должно включать в себя все варианты осуществления, не выходящие за пределы прилагаемой формулы изобретения.

Перечень позиций

Фиг.1a:

100 - многорядный трубно-коллекторный узел

101 - коллектор

105A - 105C - ряды труб

Фиг.1b:

100 - многорядный трубно-коллекторный узел

101 - коллектор

105A - 105C - ряды труб

Фиг.2, 3, 4:

200 - однорядный трубно-коллекторный узел

201A-205F - первое множество рядов труб

201G -201L - второе множество рядов труб

205A-205F - первые общие (впускные) коллекторы

205G-205L - вторые общие (выпускные) коллекторы

215 - впускной трубопровод

220A-220F - первые соединительные трубы

220G-205L - вторые соединительные трубы

225 - выпускной трубопровод

230 - первый однорядный трубно-коллекторный узел

240 - второй однорядный трубно-коллекторный узел

362 - приемное отверстие трубопровода

368 - выпускное отверстие трубопровода

372 - крышки

Фиг.5, 6, 7:

300 - узел воздушного рекуператора с регенерацией тепла

305A-305L - третьи общие коллекторы

320A-320L - третьи соединительные трубы

360 - верхняя часть узла 300

364, 366 - стрелки, показывающие направление потока

362 - приемное отверстие трубопровода

368 - выпускное отверстие трубопровода

370 - поток отработавших газов

380 - зажимы труб

400 - рекуператор

402 - прилегающая стенка

403 - канал отвода нагретого газа

274 (374) - соединительная муфта

Фиг.8:

1 - каверна

3 - воздушная турбина

4, 6 - в тексте не указано, но возможно трубопроводы

5 - газовая турбина

7 - выхлопная труба

8, 9 - клапанные механизмы

400 - рекуператор.


УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
УНИВЕРСАЛЬНЫЙ УЗЕЛ РЕКУПЕРАТОРА ДЛЯ ОТРАБОТАВШИХ ГАЗОВ ГАЗОВОЙ ТУРБИНЫ
Источник поступления информации: Роспатент

Showing 1-10 of 218 items.
10.04.2013
№216.012.325c

Способ и устройство для управления электростатическим пылеуловителем

Изобретение относится к способу и устройству управления работой электростатического пылеуловителя, который выполнен с возможностью удаления частиц пыли из технологического газа. Способ управления работой электростатического пылеуловителя, ESP, который выполнен с возможностью удаления частиц...
Тип: Изобретение
Номер охранного документа: 0002478435
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ee

Ротор для электродинамической машины

Ротор для электродинамической машины, в частности для гидрогенератора, содержит корпус, который собран из множества расположенных в аксиальном направлении друг за другом сегментов (10) из листового металла, между сегментами (10) для образования охлаждающих каналов установлены установочные...
Тип: Изобретение
Номер охранного документа: 0002479093
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ef

Ротор электрической машины

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения роторов электрических машин, в частности гидрогенераторов. Предлагаемый ротор (10) электрической машины содержит ярмо (12) с распределенными по внешней периферии осевыми пазами (13), в которые...
Тип: Изобретение
Номер охранного документа: 0002479094
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.3fb7

Система и способ регенерации раствора абсорбента

Изобретение относится к системе и способу регенерации раствора абсорбента, используемого в абсорбции кислотного компонента из технологического потока. Система включает пар, производимый бойлером; множество турбин, соединенное по текучей среде с бойлером; механизм перекачивания для...
Тип: Изобретение
Номер охранного документа: 0002481881
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fb8

Улучшенная промотором система на основе охлажденного аммиака и способ удаления co из потока дымового газа

Изобретение относится к способу поглощения CO из газового потока, указанный способ включает: контактирование потока дымового газа, содержащего CO, с обедненным раствором поглотителя, причем обедненный раствор поглотителя содержит аммиаксодержащий ионный раствор или суспензию, основанные на...
Тип: Изобретение
Номер охранного документа: 0002481882
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fc6

Способ оценки пылевой нагрузки электрофильтра и способ и устройство управления встряхиванием электрофильтра

Изобретение относится к способу управления встряхиванием электродов электрофильтра и оценки текущей нагрузки частиц пыли на осадительные электроды. Способ управления встряхиванием, по меньшей мере, одного осадительного пластинчатого электрода (30) электрофильтра (1), в котором подают при помощи...
Тип: Изобретение
Номер охранного документа: 0002481896
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.45ac

Электрическая машина, в частности трехфазный асинхронный гидрогенератор

Изобретение относится к области электротехники и касается выполнения электрических машин, в частности трехфазного асинхронного гидрогенератора, с ротором и статором, а также с обмоткой, включающей множество проходящих в осевом направлении, лежащих друг над другом в соответствующих пазах обмотки...
Тип: Изобретение
Номер охранного документа: 0002483413
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.471c

Система и способ регенерации раствора абсорбента

Система абсорбирования из технологического потока кислотного компонента. Система включает: технологический поток, содержащий кислотный компонент; раствор абсорбента для абсорбирования из технологического потока, по меньшей мере, части кислотного компонента, где раствор абсорбента содержит...
Тип: Изобретение
Номер охранного документа: 0002483784
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.471d

Система и способ удаления кислотного компонента из технологического потока

Система для абсорбции и тем самым удаления, по меньшей мере, части кислотного компонента из технологического потока. Система включает абсорбер, предназначенный принимать технологический поток, в котором абсорбер использует абсорбирующий раствор, для абсорбирования кислотного компонента из...
Тип: Изобретение
Номер охранного документа: 0002483785
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b64

Способ удаления co (варианты)

Изобретение может быть использовано в химической промышленности. Для удаления диоксида углерода из дымовых газов электростанции на ископаемом топливе используется раствор аммиака. Дымовые газы обессеривают, охлаждают и абсорбируют из них CO. Вместе с углекислым газом из дымовых газов...
Тип: Изобретение
Номер охранного документа: 0002484882
Дата охранного документа: 20.06.2013
Showing 1-10 of 206 items.
10.04.2013
№216.012.325c

Способ и устройство для управления электростатическим пылеуловителем

Изобретение относится к способу и устройству управления работой электростатического пылеуловителя, который выполнен с возможностью удаления частиц пыли из технологического газа. Способ управления работой электростатического пылеуловителя, ESP, который выполнен с возможностью удаления частиц...
Тип: Изобретение
Номер охранного документа: 0002478435
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ee

Ротор для электродинамической машины

Ротор для электродинамической машины, в частности для гидрогенератора, содержит корпус, который собран из множества расположенных в аксиальном направлении друг за другом сегментов (10) из листового металла, между сегментами (10) для образования охлаждающих каналов установлены установочные...
Тип: Изобретение
Номер охранного документа: 0002479093
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34ef

Ротор электрической машины

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения роторов электрических машин, в частности гидрогенераторов. Предлагаемый ротор (10) электрической машины содержит ярмо (12) с распределенными по внешней периферии осевыми пазами (13), в которые...
Тип: Изобретение
Номер охранного документа: 0002479094
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.3fb7

Система и способ регенерации раствора абсорбента

Изобретение относится к системе и способу регенерации раствора абсорбента, используемого в абсорбции кислотного компонента из технологического потока. Система включает пар, производимый бойлером; множество турбин, соединенное по текучей среде с бойлером; механизм перекачивания для...
Тип: Изобретение
Номер охранного документа: 0002481881
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fb8

Улучшенная промотором система на основе охлажденного аммиака и способ удаления co из потока дымового газа

Изобретение относится к способу поглощения CO из газового потока, указанный способ включает: контактирование потока дымового газа, содержащего CO, с обедненным раствором поглотителя, причем обедненный раствор поглотителя содержит аммиаксодержащий ионный раствор или суспензию, основанные на...
Тип: Изобретение
Номер охранного документа: 0002481882
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fc6

Способ оценки пылевой нагрузки электрофильтра и способ и устройство управления встряхиванием электрофильтра

Изобретение относится к способу управления встряхиванием электродов электрофильтра и оценки текущей нагрузки частиц пыли на осадительные электроды. Способ управления встряхиванием, по меньшей мере, одного осадительного пластинчатого электрода (30) электрофильтра (1), в котором подают при помощи...
Тип: Изобретение
Номер охранного документа: 0002481896
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.45ac

Электрическая машина, в частности трехфазный асинхронный гидрогенератор

Изобретение относится к области электротехники и касается выполнения электрических машин, в частности трехфазного асинхронного гидрогенератора, с ротором и статором, а также с обмоткой, включающей множество проходящих в осевом направлении, лежащих друг над другом в соответствующих пазах обмотки...
Тип: Изобретение
Номер охранного документа: 0002483413
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.471c

Система и способ регенерации раствора абсорбента

Система абсорбирования из технологического потока кислотного компонента. Система включает: технологический поток, содержащий кислотный компонент; раствор абсорбента для абсорбирования из технологического потока, по меньшей мере, части кислотного компонента, где раствор абсорбента содержит...
Тип: Изобретение
Номер охранного документа: 0002483784
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.471d

Система и способ удаления кислотного компонента из технологического потока

Система для абсорбции и тем самым удаления, по меньшей мере, части кислотного компонента из технологического потока. Система включает абсорбер, предназначенный принимать технологический поток, в котором абсорбер использует абсорбирующий раствор, для абсорбирования кислотного компонента из...
Тип: Изобретение
Номер охранного документа: 0002483785
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b64

Способ удаления co (варианты)

Изобретение может быть использовано в химической промышленности. Для удаления диоксида углерода из дымовых газов электростанции на ископаемом топливе используется раствор аммиака. Дымовые газы обессеривают, охлаждают и абсорбируют из них CO. Вместе с углекислым газом из дымовых газов...
Тип: Изобретение
Номер охранного документа: 0002484882
Дата охранного документа: 20.06.2013
+ добавить свой РИД