×
10.09.2015
216.013.75ef

Результат интеллектуальной деятельности: ПАРОГАЗОВАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором. В котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя. Паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором. Охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором. Паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором. Изобретение позволяет увеличить мощность и КПД парогазовой установки, повысить надежность и безопасность ее работы, а также снизить затраты в установку. 1 ил.
Основные результаты: Парогазовая установка, содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором, отличающаяся тем, что в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях.

Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (воде и водяном паре в верхнем цикле и бутане - в нижнем) (Готовский М.А., Гринман М.И., Фомин В.А., Арефьев В.К., Григорьев А.А. Использование комбинированного пароводяного и органического циклов Ренкина для повышения экономичности ГТУ и ДВС / Журнал «Теплоэнергетика». 2012. №3, с. 56-61), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены поверхности нагрева экономайзера, испарителя и пароперегревателя. Испаритель котла-утилизатора трубопроводами связан с барабаном, который паропроводом связан с пароперегревателем котла-утилизатора и водопроводом с первым насосом, который водопроводом связан с деаэратором, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого давления связана паропроводами с пароперегревателем котла-утилизатора, подогревателем сетевой воды и конденсатором-испарителем. Подогреватель сетевой воды водопроводом связан со вторым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина низкого давления паропроводами связана с конденсатором-испарителем и конденсатором, который водопроводом связан с третьим насосом, который водопроводом связан с конденсатором-испарителем. Конденсатор-испаритель водопроводом связан с четвертым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого и паровая турбина низкого давления валами связанны с электрическим генератором.

Недостатком этой парогазовой установки является то, что в последних ступенях паровой турбины высокого давления при давлениях пара на выходе 0,06-0,25 МПа, необходимых для подогрева сетевой воды, водяной пар имеет значительную влажность, что снижает КПД турбины, т.к. увеличение средней степени влажности на 1% снижает относительный КПД турбины на 1%. При этом при давлениях пара в конденсаторе-испарителе ниже 0,1 МПа необходима система отсоса воздуха. В паровую турбину низкого давления из конденсатора-испарителя идет насыщенный пар бутана с температурой 70-110°С. Отсутствие перегрева пара перед турбиной снижает КПД нижнего цикла, т.к. из термодинамики известно, что термический КПД цикла Ренкина зависит от температуры пара перед турбиной, ее увеличение на 10°С увеличивает КПД примерно на 0,2-0,25%. Следующим недостатком является то, что конденсат пара, поступающий из подогревателя сетевой воды и конденсатора-испарителя в экономайзер котла-утилизатора имеет температуру 86-127°С, в результате чего выходящие из котла-утилизатора газы будут иметь температуру как минимум 96-137°С, а котел-утилизатор при такой высокой температуре - пониженный КПД, т.к. увеличение температуры уходящих из котла-утилизатора газов на 10°С снижает его КПД примерно на 2%. Также недостатком является то, что выходящий из турбины низкого давления бутан имеет существенный перегрев, который не используется полезно в установке и приводит к дополнительным потерям энергии в цикле. С учетом рассмотренных недостатков парогазовая установка имеет снижение КПД при производстве электроэнергии на 2-4%.

Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (бензоле в верхнем цикле и бутане - в нижнем) (А.М. Гафуров, Д.А. Усков, А.С. Шубина, «Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами» / Журнал «Энергетика Татарстана», 2012, №3, с. 35-41), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, паровую турбину высокого и паровую турбину низкого давления, валами связанные с отдельными электрическими генераторами. Паровая турбина высокого давления паропроводами связана входом с пароперегревателем котла-утилизатора и выходом через первый рекуператор - с конденсатором-испарителем, который водопроводом через первый насос связан с экономайзером котла-утилизатора. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор с конденсатором, который водопроводом через второй насос и второй рекуператор связан с конденсатором-испарителем. Эта установка принята в качестве прототипа.

Недостатком этой установки в первую очередь является то, что в верхнем паротурбинном цикле в качестве рабочего тела используется бензол - токсичное, канцерогенное, взрывоопасное вещество, самовоспламеняющееся при температуре 534°С и замерзающее при температуре 5,5°С, что снижает безопасность и надежность работы установки. Главной причиной выбора бензола послужило то, что по сравнению с другими органическими жидкостями он термоустойчив при температурах выше 600°С и позволяет получить на выходе из турбины перегретый пар, в результате чего последние ступени турбины работают без эрозионного износа лопаток и потери энергии от влажности.

Вторым недостатком установки является отсутствие охлаждения конденсата бензола на входе в экономайзер, что не позволяет снизить температуру уходящих из котла-утилизатора газов. В прототипе температура конденсата бензола на входе в экономайзер 83°С, в результате температура выходящих из экономайзера газов будет как минимум 93°С. По правилам эксплуатации котлов для работы без низкотемпературной коррозии металла со стороны газов температура входящего в поверхность нагрева теплоносителя должна быть не ниже 60°С. Что позволяет при минимальном температурном напоре 10°С на выходе экономайзера иметь температуру уходящих газов 70°С. В результате, за счет снижения температуры бензола на входе экономайзера с 83 до 60°С можно понизить температуру уходящих из него газов на 23°С. Снижение температуры уходящих из котла-утилизатора газов на 10°С увеличивает его КПД примерно на 2%. Кроме того, снижение температуры уходящих газов позволяет увеличить количество теплоты, передаваемой в верхнем цикле рабочему телу, и этим увеличить расход генерируемого рабочего тела, что позволит повысить мощность турбины и КПД верхнего цикла.

Задачей изобретения является увеличение мощности и КПД парогазовой установки, повышение надежности и безопасности ее работы и снижение затрат в установку.

Поставленная задача решена за счет того, что парогазовая установка, также как в прототипе, содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором.

Согласно изобретению в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем первый насос через охладитель-подогреватель водопроводами связан с экономайзером, а второй рекуператор трубопроводом связан с охладителем-подогревателем, который другим трубопроводом связан с конденсатором-испарителем, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.

В предложенной парогазовой установке по сравнению с прототипом в верхнем цикле в качестве рабочего тела используется вода и установлена паровая турбина среднего давления, пар в которую поступает из паровой турбины высокого давления через промежуточный пароперегреватель, встроенный в котел-утилизатор. Промежуточный перегрев пара в результате подвода теплоты от газов в котле-утилизаторе при более высокой средней температуре позволяет повысить КПД первого цикла на 0,5-1%. Кроме того, в результате подогрева в промежуточном пароперегревателе пар на выходе паровой турбины среднего давления имеет перегрев относительно температуры насыщения на 40-50°С, что позволяет за счет рекуперации тепла в первом рекуператоре иметь температуру пара второго рабочего тела на входе в паровую турбину низкого давления на 5-10°С выше температуры насыщения и, таким образом, КПД нижнего цикла можно повысить на 0,1-0,2%. Использование охладителя-подогревателя позволяет понизить температуру поступающей в экономайзер воды до требуемых по условиям надежной работы экономайзера без коррозии металла 60°С и понизить температуру отводимых из котла-утилизатора газов до 70-80°С, что повышает КПД котла-утилизатора по сравнению с прототипом на 2-4%, а также увеличивает количество теплоты, передаваемой воде и пару, и этим увеличивает расход пара в верхнем цикле, что повышает мощность работающих на паре турбин высокого и среднего давления. При этом подогрев конденсата второго рабочего тела после второго рекуператора в охладителе-подогревателе позволяет увеличить расход генерируемого пара второго рабочего тела в конденсаторе-испарителе и этим увеличить мощность турбины низкого давления. В итоге, по сравнению с прототипом увеличиваются мощность и КПД парогазовой установки по производству электроэнергии, а замена бензола в качестве рабочего тела верхнего цикла водой обеспечивает ее надежную и безопасную работу. Кроме того, по сравнению с прототипом, за счет установки одного электрического генератора вместо двух уменьшаются капитальные вложения при создании предложенной парогазовой установки, а также уменьшаются затраты на приобретение рабочего тела верхнего цикла, т.к. вода значительно дешевле бензола.

На фиг. 1 представлена схема заявляемой парогазовой установки.

Парогазовая установка (фиг. 1) содержит газотурбинную установку 1 (ГТУ), связанную газоходом с котлом-утилизатором 2, в который встроены связанные между собой поверхности нагрева первого экономайзера 3, испарителя 4 и пароперегревателя 5, а также поверхности нагрева промежуточного пароперегревателя 6. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал связаны с электрическим генератором 10. Пароперегреватель 5 паропроводом связан с паровой турбиной высокого давления 7, которая паропроводом связана с промежуточным пароперегревателем 6, который паропроводом связан с паровой турбиной среднего давления 8. Паровая турбина среднего давления 8 паропроводом связана с первым рекуператором 11, который паропроводом связан с конденсатором-испарителем 12. Конденсатор-испаритель 12 водопроводом связан с первым насосом 13, который водопроводом связан с охладителем-подогревателем 14, который водопроводом связан с экономайзером 3. Охладитель-подогреватель 14 трубопроводом связан с конденсатором-испарителем 12, который паропроводом связан с первым рекуператором 11, который паропроводом связан с паровой турбиной низкого давления 9. Паровая турбина низкого давления 9 паропроводом связана со вторым рекуператором 15, который паропроводом связан с конденсатором 16. Конденсатор 16 водопроводом связан со вторым насосом 17, который водопроводом связан со вторым рекуператором 15. Второй рекуператор 15 трубопроводом связан с охладителем-подогревателем 14. Котел-утилизатор 2 снабжен газоходом 18 для отвода газов в дымовую трубу.

Парогазовая установка работает следующим образом. Газы, образующиеся в результате работы газотурбинной установки 1 (ГТУ), с температурой, например 450-650°С поступают в котел-утилизатор 2, где в экономайзере 3 нагревают первое рабочее тело, воду, до кипения, в испарителе 4 превращают ее в насыщенный пар и в пароперегревателе 5 перегревают пар до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Перегретый пар поступает в паровую турбину высокого давления 7, где вырабатывает механическую мощность, и поступает в промежуточный пароперегреватель 6, где за счет тепла газов нагревается до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Из промежуточного пароперегревателя 6 перегретый пар поступает в паровую турбину среднего давления 8, где вырабатывает механическую мощность, и при давлении выше атмосферного с температурой 140-160°С уходит через первый рекуператор 11 в конденсатор-испаритель 12, в котором конденсируется. Образовавшийся конденсат насосом 13 сжимается до около или сверхкритического давления и через охладитель-подогреватель 14 подается в экономайзер 3. В конденсаторе-испарителе 12 за счет теплоты конденсирующегося пара нагревается и испаряется второе рабочее тело, например, бутан, которое перегревается в первом рекуператоре 11 на 5-10°С выше температуры насыщения и поступает в паровую турбину низкого давления 9, где вырабатывает механическую мощность, и при давлении выше атмосферного через второй рекуператор 14 уходит в конденсатор 15, в котором конденсируется. Образовавшийся конденсат бутана вторым насосом 16 сжимается до давления на 30-50% выше, чем давление бутана в конденсаторе-испарителе 12, и через второй рекуператор 15 и охладитель-подогреватель 14 перекачивается в конденсатор-испаритель 12. Снижение температуры воды на входе экономайзера 3 до 60°С позволяет снизить температуру отводимых в дымовую трубу газов 18 до 70-80°С и этим увеличить количество теплоты, передаваемой от газов воде и пару, что увеличивает расход пара в верхнем цикле, и в результате мощность паровых турбин высокого 7 и среднего 8 давления. Подогрев конденсата бутана во втором рекуператоре 15 и в охладителе-подогревателе 14 увеличивает количество генерируемого пара бутана в конденсаторе-испарителе 12 и в результате увеличивается мощность паровой турбины низкого давления 9. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал передают механическую мощность электрическому генератору 10, который вырабатывает электроэнергию.

Парогазовая установка, содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором, отличающаяся тем, что в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.
ПАРОГАЗОВАЯ УСТАНОВКА
Источник поступления информации: Роспатент

Showing 81-90 of 142 items.
20.03.2015
№216.013.3224

Устройство компенсации погрешности измерения ультразвукового скважинного глубиномера

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и...
Тип: Изобретение
Номер охранного документа: 0002544311
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3225

Устройство для определения характеристик материалов

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик...
Тип: Изобретение
Номер охранного документа: 0002544312
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3264

Состав антиоксидантной композиции для улучшения качества питьевой воды

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002544375
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.343a

Сильноточный наносекундный ускоритель электронных пучков

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях. Сильноточный наносекундный ускоритель электронных пучков содержит размещенные в одном...
Тип: Изобретение
Номер охранного документа: 0002544845
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3455

Сверхпроводящий быстродействующий размыкатель

Изобретение относится к измерительной технике, представляет собой сверхпроводящий быстродействующий размыкатель и может быть использовано для ввода и вывода энергии сверхпроводящих магнитных систем, в системах защиты сверхпроводящих обмоток электрических машин, сверхпроводящих кабелей и линий...
Тип: Изобретение
Номер охранного документа: 0002544872
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.384c

Способ диагностики апоптоза лимфоцитов

Изобретение относится к медицине и может быть использовано для диагностики апоптоза лимфоцитов. Для этого клетки выделяют, инкубируют 48 часов при температуре 37°С и с 5% содержанием СО, с добавлением индуктора апоптоза дексаметазона в концентрации 10 моль/мл. Количественно определяют...
Тип: Изобретение
Номер охранного документа: 0002545900
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3933

Способ защиты синхронной электрической машины от витковых замыканий обмотки ротора

Изобретение относится к электротехнике и предназначено для защиты синхронных электрических машин от витковых замыканий обмотки ротора. Задачей изобретения является предотвращение отключений синхронной электрической машины при внешних переходных процессах. Способ защиты синхронной электрической...
Тип: Изобретение
Номер охранного документа: 0002546131
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cc8

Устройство для сварки

Устройство предназначено для импульсного питания сварочной дуги с плавящимся и неплавящимся электродами. Устройство состоит из источника питания 1, к положительному полюсу которого подсоединены коммутирующий дроссель 2 и силовой тиристор 3, зашунтированные последовательно включенными...
Тип: Изобретение
Номер охранного документа: 0002547048
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b0

Сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 10 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма...
Тип: Изобретение
Номер охранного документа: 0002548048
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41dd

Депрессорная присадка к дизельному топливу

Изобретение относится к депрессорной присадке к дизельному топливу, которая включает остаточные продукты нефтепереработки, при этом присадка содержит продукт окисления тяжелой пиролизной смолы и алкилароматические углеводороды при следующих соотношениях реагентов (маc.%): окисленная тяжелая...
Тип: Изобретение
Номер охранного документа: 0002548359
Дата охранного документа: 20.04.2015
Showing 81-90 of 235 items.
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa7

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в...
Тип: Изобретение
Номер охранного документа: 0002506579
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fa8

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002506580
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a117

Способ приготовления реагента для получения меченого технецием-99м норфлоксацина

Изобретение относится к способу приготовления реагента для получения меченого технецием-99м норфлоксацина. Указанный способ включает приготовление солянокислого раствора олова (II) хлорида дигидрата, его смешивание с порошком норфлоксацина гидрохлорида, замораживание полученной смеси при...
Тип: Изобретение
Номер охранного документа: 0002506954
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a164

Способ синтеза ферритов

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут....
Тип: Изобретение
Номер охранного документа: 0002507031
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a1dd

Способ получения фуллеренов

Изобретение может быть использовано при электрохимической очистке сточных вод, имеющих сложный состав органического происхождения и ряд неорганических компонентов. Проводят электрохимическую обработку сточных вод, содержащих органические примеси, в анодной камере двухкамерного электролизера под...
Тип: Изобретение
Номер охранного документа: 0002507152
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a34b

Способ прогнозирования течения ишемической болезни сердца

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии. Способ прогнозирования течения ишемической болезни сердца заключается в том, что до и после лечения исследуют модифицированные ЛП(а) путем обработки 0,5 мл сыворотки крови 0,2 мл 0,1% раствора Тритона...
Тип: Изобретение
Номер охранного документа: 0002507518
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a747

Способ вольтамперометрического определения наночастиц feo на угольно-пастовом электроде

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц FeOна угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц FeO на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм раствор...
Тип: Изобретение
Номер охранного документа: 0002508538
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a758

Способ определения места обрыва одной фазы воздушной линии электропередачи

Изобретение относится к электротехнике, а именно к средствам обработки информации в электротехнике, и может бить использовано для определения места короткого замыкания на воздушной линии электропередачи. Способ основан на мониторинге электрической сети, отличающийся тем, что измеряют массивы...
Тип: Изобретение
Номер охранного документа: 0002508555
Дата охранного документа: 27.02.2014
+ добавить свой РИД