×
20.08.2015
216.013.6fa5

Результат интеллектуальной деятельности: РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002560151
Дата охранного документа
20.08.2015
Аннотация: Изобретение относится к области гомогенного катализа и касается производства катализатора метатезисной полимеризации дициклопентадиена. Рутениевый катализатор полимеризации дициклопентадиена представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в катионной форме формулы (1). В структуре катализатора используют принципиально новый заместитель, обеспечивающий новые свойства катализатора, позволяющие осуществлять управляемую полимеризацию дициклопентадиена в зависимости от задаваемой температуры полимеризации. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения. Последний последовательно подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-винилбензиламином с формулой (2), после чего полученное соединение перемешивают в дихлорметане при комнатной температуре в инертной атмосфере, образовавшийся продукт выделяют из реакционной смеси и высушивают. Изобретение обеспечивает возможность задавать время начала и скорость полимеризации с высокой точностью, высокий выход катализатора, активность и чистоту катализатора и минимизацию побочных примесей в процессе синтеза, расширение технологических возможностей при полимеризации дициклопентадиена и получение изделия из полидициклопентадиена с высокими потребительскими свойствами. 2 н.п. ф-лы, 2 пр. Формула (1) Формула (2)

Изобретение относится к области гомогенного катализа, в частности к способу получения катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД), а также к его применению - возможности управления метатезисной полимеризацией ДЦПД.

Каталитическая реакция метатезиса олефинов в последние годы зарекомендовала себя как универсальный метод образования С-С-связей и нашла большое применение в органическом синтезе и полимерной химии. R.Н. Grubbs, Handbook of Metathesis, v.2 and 3; Wiley VCH, Weiheim, 2003.

Семейство метатезисных реакций олефинов включает в себя метатезис с замыканием цепи (циклизация) (RCM), метатезисную полимеризацию с раскрытием цикла (ROMP), кросс-метатезис (СМ), метатезис ациклических α,ω-диенов (ADMET). R.Н. Grubbs, Handbook of Metathesis, v.1; Wiley VCH, Weiheim, 2003.

Известен ряд катализаторов метатезисной полимеризации с контролируемой каталитической активностью, опубликованных Граббсом и запатентованных Калифорнийским Технологическим институтом. HEJL A., DAY M.W., GRUBBS R.H. Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidenes II. Organomet. 2006, 25, p.6149-6154, UNG Т., HEJL A., GRUBBS R.H., SCHRODI Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organomet., 2004, 23, p.5399-5401.

Катализаторы используют для получения полимеров из циклоолефинов и бициклоолефинов по реакции метатезисной полимеризации с раскрытием цикла при мольном соотношении мономер:катализатор в интервале от 30000:1 до 40000:1.

Высокая активность этих катализаторов затрудняет их применение в полимеризации ДЦПД, т.к. частицы катализатора покрываются слоем образовавшегося полимера с формированием микрокапсул, что препятствует растворению катализатора в мономере. Это приводит к большому расходу катализаторов и, как следствие, высокой себестоимости получения полидициклопентадиена.

Предварительное растворение катализатора в инертном растворителе снижает показатели качества полимера - полидициклопентадиена (ПДЦПД).

Известен способ получения катализатора метатезисной полимеризации дициклопентадиена, заключающийся в том, что катализатор Граббса второго поколения или его производные обрабатываются соответствующим стиролом в хлористом метилене при 40°С. Процесс метатезисной полимеризации дициклопентадиена начинается через 4 мин при 30°С и мольном соотношении мономер:катализатор от 30000:1 до 40000:1. US 2005261451 А, 24.11.2005.

Недостатком данного способа является низкий выход целевого продукта, который составляет от 50 до 65%. Это обусловлено многостадийностью синтеза и несовершенством методики.

В настоящее время широкое распространение получили катализаторы на основе карбеновых комплексов рутения для полимеризации цикло- и бициклоолефинов с раскрытием кольца с помощью метатезиса. Известны способы получения полидициклопентадиена под действием рутениевых катализаторов - карбеновых комплексов с фосфиновыми лигандами (катализаторы Граббса первого поколения), которые отличаются хорошей устойчивостью и эффективностью, в 5 раз превосходящей комплексы вольфрама, что позволяет использовать мольное соотношение мономер:катализатор до 15000:1. WO 9960030 А, 25.11.1999 и WO 9720865 А, 12.06.1997.

Основным недостатком рутениевых катализаторов первого поколения является низкая каталитическая активность, что обуславливает необходимость использования большого количества катализатора от 1:8000 до 1:15000.

Активность рутениевых катализаторов второго поколения в 5 и более раз превосходит таковую для катализаторов первого поколения, однако плохая растворимость и высокая скорость полимеризации дициклопентадиена затрудняет их использование. Катализатор, не успевая раствориться в мономере, покрывается слоем полимера - капсулируется и теряет активность. Это приводит к необходимости существенного увеличения расхода катализатора. Кроме того, при изготовлении изделий из полидициклопентадиена (ПДЦПД) методом литьевого формования возникают технологические проблемы, поскольку отсутствует возможность управления временем начала полимеризации и образующийся слишком рано полимер может забивать узлы подачи смеси мономера и катализатора.

Известен катализатор полимеризации дициклопентадиена общей формулы

где L - заместитель, выбран из группы, включающей

Способ его получения предусматривает взаимодействие трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере, выделяют образовавшийся инденилиденовый комплекс рутения, который последовательно в одном реакторе подвергают взаимодействию с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидином и 2-(N,N-диалкиламинометил)стиролом, или 1-(2-винилбензил)пирролидином, или 4-(2-винилбензил)морфолином в толуоле при нагревании 60-70°С в инертной атмосфере. Причем диалкил- представляет собой диэтил-, или метилэтил-, или метил(2-метоксиэтил)-. RU 2393171 С1, 27.08.2010.

Наиболее близким по технической сущности к предложенному является катализатор полимеризации дициклопентадиена (ДЦПД), имеющий общую формулу

где L - заместитель, выбран из группы аминостиролов. Получают катализатор взаимодействием трифенилфосфинового комплекса рутения с 1,1-дифенил-2-пропин-1-олом в тетрагидрофуране или диоксане при температуре кипения растворителя в инертной атмосфере, а затем с трициклогексилфосфином при комнатной температуре в инертной атмосфере выделяют образовавшийся инденилиденовый комплекс рутения. Последовательное взаимодействие с 1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином и соответствующим 2-винилбензиламином приводит к образованию целевого продукта. RU 2462308 С1, 27.09.2012.

Основными недостатками известных катализаторов для получения полидициклопентадиена и материалов на его основе является затрудненность управления временем начала полимеризации и невозможность вовлекать в реакцию модифицирующие добавки, что приводит к нарушениям технологического цикла и неоднородности получаемого продукта.

Техническая задача, решаемая заявленной группой изобретений, заключается в создании нового эффективного рутениевого катализатора метатезисной полимеризации дициклопентадиена в форме катионного комплекса, позволяющего управлять временем начала полимеризации, снижении его расхода за счет повышения растворимости в мономере и способа его получения, обеспечивающего высокий выход и чистоту катализатора с высокой каталитической активностью.

Технический результат от реализации заявленной группы изобретений заключается в обеспечении возможности задавать время начала и скорость полимеризации с высокой точностью, что не всегда достижимо в способе-прототипе. При этом достигается высокая чистота и каталитическая активность катализатора и минимизация побочных примесей в процессе синтеза. Изменение концентрации катализатора и температуры полимеризации позволяет расширять технологические возможности при полимеризации дициклопентадиена и получать изделия из полидициклопентадиена с высокими потребительскими свойствами.

Техническая задача решается тем, что рутениевый катализатор полимеризации дициклопентадиена представляет собой [1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]хлоро(2-((2-(диметиламиноэтилметиламино)метил))бензилиден)рутений хлорид в форме катионного комплекса формулы

(катализатор N1b). В структуре катализатора используют принципиально новый заместитель с формулой

обеспечивающий новые свойства катализатора, позволяющие осуществлять управляемую полимеризацию дициклопентадиена в зависимости от задаваемой температуры полимеризации дициклопентадиена в более широком временном и температурном интервале - от 50°С до 200°С со временем цикла от 10 мин до 4 ч в зависимости от концентрации катализатора и температуры полимеризации. Катализатор имеет высокую каталитическую активность, химически активен по отношению к широкому спектру добавок и расширяет технологические возможности при изготовлении изделий из полидициклопентадиена. Катализатор позволяет управлять скоростью и временем начала полимеризации, осуществлять плавную или ступенчатую полимеризацию, регулировать реологические и другие физико-механические характеристики полимерной матрицы. Управляющим фактором выступает температура нагрева или охлаждения полимерной матрицы в процессе полимеризации.

В соответствии с поставленной задачей разработан способ получения заявленного катализатора.

Способ получения катализатора осуществляют в три стадии.

Первая стадия - синтез инденилиденового комплекса (In) по следующей схеме:

Вторая стадия включает обработку инденилиденового комплекса рутения N-гетероциклическим карбеновым лигандом: 1,3-бис-(2,4,6-триметилфенил)-2-трихлорметилимидазолидином, H2IMesHCCl3, и 2-винилбензиламином формулы

с образованием соединения N1a по следующей схеме:

Третья стадия включает получение катализатора N1b в соответствии со следующей схемой:

Выход катализатора составляет до 70%.

Полимеризацию дициклопентадиена осуществляют с использованием заявленного катализатора при мольном соотношении субстрат:катализатор от 30000:1 до 200000:1 в интервале температур от 50°С до 200°С. Время цикла составляет от 10 мин до 4 ч. Время цикла полимеризации и скорость регулируют задаваемыми температурами в указанном интервале.

Пример полимеризации ДЦПД заключается в следующем.

Пример 1. Раствор 1,25 мг катализатора N1b и 0,33 г (1,2 мас.%) пентаэритритол тетракис(3,5-ди-трет-бутил-4-гидроксициннамата) в 26,44 г ДЦПД (мольное соотношение ДЦПД:катализатор = 100000:1) помещают в литьевую форму, нагретую до 50°С, и поднимают температуру до 200°С, и поддерживают эту температуру в течение 40 мин. Получают твердый прозрачный образец ПДЦПД без запаха. Температура стеклования Tg 157°C, модуль упругости на изгиб 1,65 ГПа, прочность при растяжении: предел текучести 60,3 МПа, разрушающее напряжение 50,3 МПа, относительное удлинение при разрыве 98%. Ударная вязкость по Изоду с надрезом 4,8 кДж/м2, твердость по Шору D83.

Изобретение иллюстрируется следующим примером.

Пример 2.

Синтез катализатора N1b проводят в условиях, исключающих попадание влаги и воздуха в реакционную систему. Используют технику и реакторы Шленка, подсоединенные к вакуумной системе и линии сухого аргона. Растворители: хлористый метилен, толуол, гексан, метанол абсолютируют по стандартным методикам и хранят в инертной атмосфере. Чистоту катализаторов оценивают на основании спектров протонного магнитного резонанса (ЯМР 1Н) и (или) тонкослойной хроматографии ТСХ (гексан/этилацетат 4/1).

В сосуд Шленка объемом 1000 мл помещают 15 г (15,64 ммоль) RuCl2(PPh3), 5,3 г (25,45 ммоль) 1,1-дифенил-2-пропин-1-ола, прибор заполняют аргоном. Добавляют 800 мл абсолютного тетрагидрофурана и кипятят в атмосфере аргона в течение 3 ч при перемешивании. Смесь упаривают в вакууме при комнатной температуре на 50% и прибавляют в токе аргона 14 г (50,04 ммоль) трициклогексилфосфина и перемешивают в течение 3 ч. Растворитель отгоняют в вакууме и к остатку добавляют 400 мл ацетона, после чего суспензию выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают метанолом 2 раза по 70 мл, ацетоном 2 раза по 80 мл и холодным гексаном 80 мл и высушивают в вакууме. Получают 15,3 г инденилиденового комплекса рутения In(1.2) с выходом 14,83 ммоль (94,8%).

Аналогичным образом получено 14,8 г In(1.2) с выходом 92% при проведении реакции в диоксане при кипячении вместо тетрагидрофурана.

В сосуд Шленка объемом 25 мл помещают 0,923 г (1 ммоль) In(1.2) 0,723 г (1,7 ммоль) 1,3-бис-(2,4,6-триметилфенил)-2-трихлорометилимидазолидина, 10 мл абсолютного толуола. Нагревают в инертной атмосфере при 70°С в течение 15 ч. Смесь охлаждают и в токе аргона добавляют 0,545 г (2,5 ммоль) 2-винилбензиламина S. Нагревают в инертной атмосфере в течение 6 ч. Смесь охлаждают и фильтруют. Толуол отгоняют в вакууме и остаток суспендируют в 5,5 мл гексана. Смесь выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают 3×2 мл гексаном и 2×2 мл метанолом. После высушивания в вакууме получают соединение N1a в виде зеленого порошка. Полученный порошок 0,464 г (0,68 ммоль) и 5 мл абсолютного дихлорметана помещают в сосуд Шленка объемом 25 мл. Перемешивают в инертной атмосфере при комнатной температуре в течение 100 ч. Дихлорметан отгоняют в вакууме и остаток суспендируют в 5,5 мл гексана. Смесь выдерживают при температуре -20°С в течение 10 ч. Осадок отфильтровывают и промывают 3×1 мл гексаном и 2×1 мл метанолом. После высушивания в вакууме получают 0,455 г катализатора N1b в виде зеленого порошка. Выход катализатора 68%, чистый по данным ТСХ и ЯМР. Спектр 1Н ЯМР (600 МГц, CD2Cl2) δ Н, м.д.: 1,86 (3Н, s, NCH 3), 2,05 (3Н, s, H3CNCH 3), 2,14 (3H, s, H 3CNCH3), 2,21-2,85 (20H, m, 6CH 3Ar+CH2CH2NMe2), 3,55 (1Н, d J=14,1 Hz, CH 2CH2NMe2), 3,87-4,28 (5H, m, NCH 2CH 2N+CH 2CH2NMe2), 5,36 (1Н, s, NCH 2Ar), 5,98 (1Н, s, NCH 2Ar), 6,87 (1Н, br.s, HAr), 7,08 (1Н, d J=7,5 Hz, HAr), 7,14 (1Н, br.s, HAr), 7,18 (1Н, br.s, HAr), 7,30 (1Н, d J=7,2 Hz, HAr), 7,36 (1Н, t J=7,5 Hz, HAr), 7,65 (1Н, t J=7,5 Hz, HAr), 19,15 (1Н, s, Ru=CH).

Катализатор метатезисной полимеризации дициклопентадиена может использоваться для промышленного производства изделий различных размеров из полидициклопентадиена. Получаемые полимеры не обладают запахом, механические и термические показатели соответствуют, а в ряде случаев превосходят таковые для промышленных материалов из полидициклопентадиена.


РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
РУТЕНИЕВЫЙ КАТАЛИЗАТОР МЕТАТЕЗИСНОЙ ПОЛИМЕРИЗАЦИИ ДИЦИКЛОПЕНТАДИЕНА В ФОРМЕ КАТИОННОГО КОМПЛЕКСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 31-33 of 33 items.
25.08.2017
№217.015.9d36

Способ олигомеризации этилена в высшие олефины c10-c30

Изобретение относится к способу олигомеризации этилена в высшие олефины С-С в присутствии каталитической системы на основе комплекса хрома с триазольным лигандом нижеуказанной общей формулы, где заместитель R выбран из группы: R=Н,...
Тип: Изобретение
Номер охранного документа: 0002610524
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.c0a6

Лиганд для получения комплекса переходного металла, способ его получения и способ получения комплекса переходного металла с использованием лиганда

Изобретение относится к лигандам для получения комплексов переходного металла, пригодным для использования в химической промышленности, общей формулы: выбранным из 4,5-бис(дифенилфосфино)-2Н-1,2,3-триазола, 4,5-бис(дифенилфосфино)-1-(гексил)-1Н-1,2,3-триазола,...
Тип: Изобретение
Номер охранного документа: 0002616628
Дата охранного документа: 18.04.2017
20.01.2018
№218.016.15bc

Способ получения депрессорной присадки к дизельному топливу и депрессорная присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу. Проводят реакцию радикальной сополимеризации малеинового ангидрида и широкой фракции 1-олефинов C-C при соотношении исходных реагентов от 1:0,92 до 1:3,7. Реакцию...
Тип: Изобретение
Номер охранного документа: 0002635107
Дата охранного документа: 09.11.2017
Showing 41-50 of 56 items.
29.03.2019
№219.016.f42b

Каталитическая композиция для получения эфиров акриловой кислоты по реакции метатезиса диалкилмалеатов с этиленом

Изобретение относится к области катализа и может быть использовано для получения эфиров акриловой кислоты по реакции метатезиса диалкилмалеатов с этиленом. Каталитическая композиция содержит в качестве одного из компонентов катализатор метатезиса олефинов, а в качестве второго компонента...
Тип: Изобретение
Номер охранного документа: 0002326733
Дата охранного документа: 20.06.2008
11.04.2019
№219.017.0b4d

Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового...
Тип: Изобретение
Номер охранного документа: 0002684412
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.813c

Способ получения микросфер полимерного проппанта

Изобретение относится к проппантам из полимерных материалов, применяемым при добыче нефти и газа методом гидравлического разрыва пласта. В способе получения микросфер полимерного проппанта, включающем приготовление полимерной матрицы на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002691226
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.84ff

Рений-оксидный катализатор метатезиса олефиновых углеводородов, способ его получения и способ синтеза пропилена с его использованием

Изобретение относится к катализаторам метатезиса олефиновых углеводородов и касается рений-оксидного катализатора на анионсодержащем носителе, способа его получения и применения. Описан рений-оксидный катализатор метатезиса олефиновых углеводородов на анионсодержащем носителе на основе...
Тип: Изобретение
Номер охранного документа: 0002292951
Дата охранного документа: 10.02.2007
19.06.2019
№219.017.8619

Катализатор метатезисной полимеризации дициклопентадиена, способы его получения и способ его полимеризации

Изобретение относится к области катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД). Катализатор метатезисной полимеризации имеет формулу: где L - заместитель, выбранный из группы: Разработано несколько способов получения катализатора. Способ...
Тип: Изобретение
Номер охранного документа: 0002393171
Дата охранного документа: 27.06.2010
19.06.2019
№219.017.866d

Катализатор для получения эфиров акриловой кислоты по реакции метатезиса диалкилмалеатов (варианты) и каталитическая композиция на его основе

Изобретение относится к органическому синтезу и касается области производства гомогенного катализатора для получения эфиров акриловой кислоты по реакции метатезиса малеатов с этиленом. Разработаны два варианта катализатора для получения эфиров акриловой кислоты по реакции метатезиса...
Тип: Изобретение
Номер охранного документа: 0002311231
Дата охранного документа: 27.11.2007
19.06.2019
№219.017.868c

Способ получения 1,3-бис(диэтилфосфинометил)бензола (варианты)

Изобретение относится к органической химии, в частности к способу получения 1,3-бис(диэтилфосфинометил)бензола формулы: Предлагаются два способа его получения. Первый способ заключается в том, что диэтилфосфин подвергают взаимодействию с 1,3-бис(дибромметил)бензолом, а образующуюся соль...
Тип: Изобретение
Номер охранного документа: 0002313534
Дата охранного документа: 27.12.2007
19.06.2019
№219.017.8742

Способ получения трициклогексилфосфина

Настоящее изобретение относится к способу получения трициклогексилфосфина, используемого в синтезе металлокомплексных катализаторов для реакций метатезиса, карбонилирования, кросссочетания, полимеризации и др. Предложенный способ заключается в том, что красный фосфор подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002375372
Дата охранного документа: 10.12.2009
19.06.2019
№219.017.876a

Способ получения катализатора метатезисной полимеризации дициклопентадиена

Изобретение относится к металлоорганической химии, в частности к способу получения катализатора метатезисной полимеризации дициклопентадиена -[1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-диметиламинометилфенил метилен)рутения. Способ получения состоит в том, что...
Тип: Изобретение
Номер охранного документа: 0002377257
Дата охранного документа: 27.12.2009
19.06.2019
№219.017.886b

Способ получения эфиров α,β-ненасыщенных жирных кислот

Изобретение относится к усовершенствованному способу получения эфиров α,β-ненасыщенных жирных кислот, заключающемуся в том, что эфиры малеиновой кислоты подвергают взаимодействию с содержащими более четырех атомов углерода терминальными алкенами в присутствии катализатора метатезиса при...
Тип: Изобретение
Номер охранного документа: 0002320640
Дата охранного документа: 27.03.2008
+ добавить свой РИД