×
20.08.2015
216.013.6f15

Результат интеллектуальной деятельности: КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам укрытия и маскировки и может использоваться для повышения качества камуфляжа. Камуфляжный материал инфракрасного диапазона содержит наружный слой, близкий по спектральной характеристике отражения к фоновой поверхности, и внутренний слой из материала с низкой теплопроводностью. В качестве наружного слоя выбран волокнистый ацетилцеллюлозный материал, известный как фильтр Петрянова ацетилцеллюлозный (ФПА), с включением наночастиц никеля, а в качестве внутреннего слоя выбран малопроницаемый для ИК части спектра излучения материал «PYROGEL®XT». При этом между указанными слоями помещен промежуточный слой из водонасыщенного высокомолекулярного геля, имеющего возможность испаряться в окружающее пространство. Технический результат изобретения - обеспечение маскирующих свойств в более широком диапазоне ИК части спектра и приведение интенсивности собственного излучения к уровню окружающего фона. 7 ил.
Основные результаты: Камуфляжный материал инфракрасного диапазона, содержащий наружный слой, близкий по спектральной характеристике отражения к фоновой поверхности, и внутренний слой из материала с низкой теплопроводностью, отличающийся тем, что в качестве наружного слоя выбран волокнистый ацетилцеллюлозный материал, известный как фильтр Петрянова ацетилцеллюлозный (ФПА), с включением наночастиц никеля, а в качестве внутреннего слоя выбран малопроницаемый для ИК части спектра излучения материал «PYROGEL®XT», при этом между указанными слоями помещен промежуточный слой из водонасыщенного высокомолекулярного геля, имеющего возможность испаряться в окружающее пространство.

Изобретение относится к средствам укрытия и маскировки и может использоваться для повышения качества камуфляжа в условиях спортивных игр, ночной охоты, военных действий и т.п.

Камуфляжные материалы широко используются охотниками, натуралистами, спортсменами, применяются в вооруженных силах. Как правило, материалы обеспечивают маскирующие свойства в видимой части электромагнитного спектра. Вместе с тем в живой природе и в технике не менее широко представлены объекты инфракрасного (ИК) излучения. В наиболее технически доступной ближней части ИК-диапазона существуют эффективные способы камуфляжа, однако усовершенствование датчиков тепловидения постоянно ставит вопрос об улучшении маскирующей способности и расширении рабочего диапазона камуфляжных материалов в длинноволновую часть ИК спектра. Основным критерием маскирующей способности является не отсутствие отражения как такового. Абсолютно не отражающий объект так же заметен на фоновой поверхности, как и 100-процентно отражающий. Критерием является подобие фону (окружающей среде) по отражающей способности в возможно более широком спектральном диапазоне.

Известен ряд камуфляжных материалов инфракрасного диапазона, представляющих собой многослойные покрытия на основе пленочных и волоконных материалов с включением наночастиц. Наиболее близким решением по технической сущности является мультиспектральная селективно отражающая структура по патенту RU 2476811, опубл. 27.02.2012.

Известный материал содержит набор поглощающих и отражающих слоев различной структуры и решает мультиспектральную задачу при контроле отражения в различных областях ИК спектра.

Вместе с тем обеспечение камуфляжных свойств в широком диапазоне длин волн посредством набора слоев, поглощающих ИК-излучение в индивидуальных участках спектра по изобретению-прототипу, не всегда оправдано, поскольку дальнейшее расширение диапазона длин волн ведет к неограниченному наращиванию числа слоев, усложнению, утяжелению и удорожанию материала. Кроме того, у известного камуфляжного материала существует дополнительный недостаток, связанный с тепловыделением защищаемого объекта. Объект, выделяющий тепло - например, человек или техническое устройство - может быть защищен от систем обнаружения, использующих естественную или искусственную подсветку, путем обеспечения малого отражения. Однако это не снимает вопрос о нейтрализации избыточного теплового излучения. Камуфляжный слой неизбежно нагревается теплом маскируемого объекта и может быть обнаружен, например, средствами тепловидения.

Таким образом, возникает проблема улучшения характеристик камуфляжного покрытия одновременно по двум направлениям: обеспечение отражения, подобного отражению от фоновой поверхности, в более широком спектральном диапазоне и нейтрализация излучения, связанного с тепловыделением маскируемого объекта.

Задача предлагаемого изобретения - обеспечение маскирующих свойств в более широкой области ИК-диапазона и приведение интенсивности собственного теплового излучения к уровню окружающей среды.

Задача решается тем, что в известном камуфляжном материале инфракрасного диапазона, представленном набором поглощающих и отражающих слоев, количество слоев ограничено наружным, промежуточным и внутренним слоями, причем наружный слой выполнен из теплоизоляционного материала со спектральной характеристикой отражения, близкой к характеристике отражения фоновой поверхности, внутренний слой выполнен из теплоизоляционного материала, не пропускающего ИК-излучение, промежуточный слой выполнен из материала, обладающего охлаждающими свойствами.

При этом для наружного слоя предпочтительно может быть выбран материал ФПА (фильтр Петрянова ацетилцеллюлозный) с включением наночастиц никеля, для внутреннего слоя предпочтительно может быть выбран материал «Pyrogel XT» и для промежуточного слоя предпочтительно может быть выбран высокомолекулярный гель.

Изобретение поясняется иллюстрациями фиг. 1 - 7.

На фиг. 1 изображена схема расположения слоев камуфляжного материала ИК-диапазона по изобретению.

Фиг. 2 иллюстрирует принцип поглощения широкополосного излучения волокнистым материалом. Цифрами обозначены: 6 - излучение, 7 - волокна материала, 8 - наночастицы.

На фиг 3-6 представлены результаты оптимизации наружного слоя заявляемого материала.

На фиг. 7 представлена динамика температуры покрытий различной структуры, маскирующих тепловыделяющий объект.

Камуфляжный материал инфракрасного диапазона (фиг. 1) выполнен из набора поглощающих слоев. Здесь цифрами обозначены: 1 - фоновая поверхность, 2 - объект, 3 - наружный слой, 4 - промежуточный слой, 5 - внутренний слой.

Число слоев по изобретению ограничено тремя, при этом в качестве внешнего слоя 3 выбран теплоизоляционный материал, близкий по спектральной характеристике отражения к фоновой поверхности, в качестве внутреннего слоя 5 выбран теплоизоляционный материал, не пропускающий ИК-излучение, в качестве промежуточного слоя 4 выбран материал, обладающий охлаждающими свойствами. Наружный слой предпочтительно выполнен из материала ФПА (фильтр Петрянова ацетилцеллюлозный) с включением наночастиц никеля. Закрепление наночастиц на волокнистом материале производится, например, нагревом до температуры размягчения волокнистой основы. Внутренний слой предпочтительно выполнен из материала «Pyrogel XT», выпускаемой, например, компанией Aspen Aerogels, Inc. Промежуточный слой предпочтительно выполнен нанесением высокомолекулярного геля на обращенную в сторону наружного слоя поверхность внутреннего слоя. В качестве высокомолекулярного геля могут быть использованы фармацевтические мази или кремы, предпочтительно содержащие по рецептуре максимальное количество жидкости.

Влияние отличительных признаков на достижение технического результата обусловлено следующим.

1. Ограничение числа слоев тремя обеспечивает заявленное улучшение характеристик камуфляжного материала без существенного увеличения толщины и массы, а также технической сложности в отличие от известного покрытия, где число разнообразных слоев и покрытий достигает 5-6. При этом выбранного числа слоев достаточно для достижения технического результата. Слои, расположенные в соответствии с фиг. 1, выполняют все необходимые функции, то есть: уподобление фону по спектральной отражательной способности, поглощение избыточного тепла и уподобление фону по температуре.

2. Выбор в качестве наружного слоя материала, близкого по спектральной характеристике отражения к фоновой поверхности, обеспечивает малый контраст объекта, камуфлированного заявленным материалом, относительно фона при температурном равновесии с окружающей средой. В соответствии с общими принципами рассеяния и поглощения электромагнитного излучения наиболее универсальным с точки зрения регулирования отражения в широком спектральном диапазоне является материал, создаваемый на основе принципа световой ловушки. Для этого на материале, структурированном в виде микроволокон определенной длины и плотности, закрепляются наночастицы (см. фиг. 2). Излучение, падающее на материал, частично поглощается наночастицами, частично рассеивается на микроволокнах и отправляется вглубь, постепенно угасая по мере прохождения через материал. Принцип подобной ловушки аналогичен принципу действия модели абсолютно черного тела. При этом соотношение поглощения и рассеяния устанавливается подбором концентрации наночастиц. Технический результат в части обеспечения нужной характеристики отражения в широком диапазоне длин волн ИК-излучения достигается оптимальным выбором материала, типа наночастиц, способа их закрепления на материале.

3. Выбор в качестве внутреннего слоя теплоизоляционного материала, не пропускающего ИК-излучения, обеспечивает дозированный поток тепла от объекта в направлении промежуточного охлаждающего (теплопоглощающего) слоя. Теплопередача внутреннего слоя должна быть не слишком малой, чтобы не допустить перегрева объекта, и не слишком большой, чтобы не исчерпать ресурс хладоемкости промежуточного слоя слишком быстро.

4. Выбор в качестве наружного слоя материала ФПА (фильтр Петрянова ацетилцеллюлозный) с включением наночастиц никеля произведен экспериментально перебором различных волокнистых материалов (бумага, КМН, ФПА, ТДМ и т.п.) и нанопорошков ряда металлов (Ti, W, Cu, Al, Ni). Фильтрующие материалы марки ФПА [http://filar.ru/svedenia1.html] гидрофильны, обладают химической стойкостью к органическим растворителям типа пластификаторов и масел, термостойкостью до 150°С. Технология получения нанопорошков металлов основана, как правило, на взрывном испарении проволоки импульсом тока.

При выполненных авторами наблюдениях с помощью тепловизора установлено, что материал ФПА с наночастицами никеля проявляет наименьший контраст на фоне наиболее распространенных конструкционных материалов: штукатурка, древесина, стекло и т.п. Результаты тепловизионных измерений приведены на фиг. 3-6. Изображение на фиг.3 соответствует заявленной комбинации материала ФПА и наночастиц никеля. По сравнению с другими испытанными образцами на основе различных волокнистых материалов и нанопорошков (см. фиг.4 - фиг.6) заявленная комбинация обладает наименьшим контрастом относительно фона. Теплоизоляционные свойства материала по изобретению обусловлены его волокнистостью. Наличие теплоизоляционных свойств обеспечивает возможность установления на внешней поверхности наружного слоя температуры, равной температуре окружающей среды, независимо от температуры нижележащих слоев, если разница между ними не слишком велика.

5. Выбор в качестве материала внутреннего слоя материала «Pyrogel XT» обусловлен его низкой теплопроводностью при относительно малой толщине и гибкости. Материал «Pyrogel XT» [http://www.aerogel.com/Aspen_Aerogels_Pyrogel_XT.pdf] представляет собой изоляционное покрытие, состоящее из аэрогеля и армированной нетканой стеклянно-волоконной прокладки. Аэрогели обладают теплопроводностью, в 2-5 раз меньшей, чем традиционные теплоизоляционные материалы. Pyrogel XT является гибким, легким, тонким и безопасным для окружающей среды материалом. Малая, но конечная теплопроводность указанного материала обеспечивает дозированную передачу тепла, выделяемого объектом, к промежуточному охлаждающему слою без перегрева объекта.

6. Выбор высокомолекулярного геля, обладающего охлаждающими свойствами, в качестве промежуточного слоя обусловлен технической простотой реализации функции охлаждения за счет испарения жидкости, входящей в состав геля, одновременно благодаря вязкости геля исключается растекание жидкости. Высокомолекулярные гели представляют собой растворы высокомолекулярных соединений (ВМС) [см. источник информации «Высокомолекулярные соединения» //Аржаков М.С. и др. http://vms-praktikum.narod.ru/vmsbaku.pdf]. Наиболее доступными и одновременно безопасными являются массово применяемые в фармацевтической и косметической промышленности гели на основе поливинил-пирролидона, поливинилового спирта, полимера и сополимера акриловой и метакриловой кислот. Высокомолекулярные гели в виде растворов ВМС в воде или в смеси воды с этанолом при концентрации порядка 20% обладают высокой вязкостью, препятствующей их растеканию и просачиванию и способствующей удержанию на волокнистой поверхности. Благодаря этому они способны в течение относительно длительного времени оказывать охлаждающий эффект за счет испарения жидкости.

7. Порядок расположения слоев обеспечивает а) дозированную теплопередачу от объекта через внутренний слой в направлении промежуточного гелевого слоя; б) поглощение тепла от объекта гелевым слоем и отвод в окружающее пространство за счет испарения растворителя; в) установление распределения температуры в толще наружного слоя, представленного теплоизоляционным материалом: от температуры геля на стороне, обращенной вовнутрь, до температуры окружающей среды на стороне, обращенной наружу. Благодаря этому наружный слой оказывается наиболее близок к фону как по отражению падающего ИК-излучения, так и по собственному тепловому излучению.

Таким образом, заявленная совокупность признаков обеспечивает технический результат в виде обеспечения низкой отражательной способности камуфляжного материала в более широком участке ИК-диапазона и приведения интенсивности его собственного излучения к уровню фона.

Камуфляжные свойства заявляемого материала реализуются благодаря действию следующих физических факторов:

1. Наружный слой заявленного состава обладает в широком спектральном диапазоне ИК-излучения отражательной способностью, наиболее приближающейся к отражательной способности типичных фоновых поверхностей. Этим достигается малая заметность камуфлированного объекта ИК рецепторами при температурном равновесии с окружающей средой.

2. Малая заметность камуфлированного объекта при наличии тепловыделения от человека или технического устройства достигается за счет частичной теплоизоляции объекта внутренним слоем, отведения избыточного тепла за счет испарения жидкости из слоя высокомолекулярного геля и выравнивания температуры внешней поверхности наружного теплоизолирующего слоя с температурой окружающей среды за счет его малой теплопроводности.

Динамика установления теплового баланса в слоях камуфляжного покрытия по изобретению иллюстрируется графиками фиг. 7. Температура фона - 27º С. Кривая a) на фиг. 7 отражает установление температуры внешней поверхности камуфляжного материала, представленного исключительно слоем материала Pyrogel XT. В течение короткого времени поверхность приобретает температуру, демаскирующую объект. Кривая b) на фиг. 7 отражает динамику установления температуры внешней поверхности камуфляжного материала, представленного материалом Pyrogel XT в комбинации с ФПА с включением наночастиц никеля. Благодаря дополнительной теплоизоляции слоя ФПА установившаяся температура наружной поверхности несколько ниже, чем у одиночного слоя Pyrogel XT, тем не менее, она превышает температуру фона, что опять-таки демаскирует объект. Кривая c) на фиг. 7 отражает динамику установления температуры внешней поверхности камуфляжного материала, представленного всеми тремя слоями в соответствии с изобретением. Благодаря отводу тепла за счет испарения жидкости и низкой теплопроводности наружного слоя избыточный нагрев внешней поверхности остается на уровне погрешности. Испарение жидкости происходит достаточно медленно, что позволяет объекту в течение длительного времени сохранять маскировку.

Технический результат - улучшение маскирующих свойств камуфляжного материала в более широком диапазоне ИК части спектра и приведение интенсивности собственного излучения к уровню излучения фоновой поверхности.

Источники информации

1 RU 2476811, опубл. 27.02.2012.

2 Материал «Pyrogel XT». http://www.aerogel.com/Aspen_Aerogels_Pyrogel_XT.pdf

3 Высокомолекулярные соединения» //Аржаков М.С. и др. http://vms-praktikum.narod.ru/vmsbaku.pdf

Камуфляжный материал инфракрасного диапазона, содержащий наружный слой, близкий по спектральной характеристике отражения к фоновой поверхности, и внутренний слой из материала с низкой теплопроводностью, отличающийся тем, что в качестве наружного слоя выбран волокнистый ацетилцеллюлозный материал, известный как фильтр Петрянова ацетилцеллюлозный (ФПА), с включением наночастиц никеля, а в качестве внутреннего слоя выбран малопроницаемый для ИК части спектра излучения материал «PYROGEL®XT», при этом между указанными слоями помещен промежуточный слой из водонасыщенного высокомолекулярного геля, имеющего возможность испаряться в окружающее пространство.
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
КАМУФЛЯЖНЫЙ МАТЕРИАЛ ИНФРАКРАСНОГО ДИАПАЗОНА
Источник поступления информации: Роспатент

Showing 11-20 of 45 items.
20.02.2015
№216.013.285d

Способ получения гликолевой кислоты

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д. Данная кислота обладает рядом важных свойств,...
Тип: Изобретение
Номер охранного документа: 0002541790
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2865

Способ приготовления индикаторных углеродсодержащих электродов, модифицированных наночастицами металлов, для вольтамперометрического анализа органических соединений

Изобретение относится к способу приготовления индикаторных углеродсодержащих электродов, модифицированных наночастицами металлов Au, Pt, Pd, Ni, Cu. При этом модифицирование проводится путем осаждения наночастиц металлов полученных методом лазерной абляции металлических мишеней в чистых...
Тип: Изобретение
Номер охранного документа: 0002541798
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ac1

Штамм бактерий desulfovibrio sp. для очистки сточных вод от ионов тяжелых металлов

Изобретение относится к биотехнологии и может быть использовано для очистки промышленных сточных вод машиностроительных, приборостроительных, электротехнических предприятий от повышенных концентраций ионов меди и других тяжелых металлов. Штамм бактерий Desulfovibrio sp. A 4/1 депонирован во...
Тип: Изобретение
Номер охранного документа: 0002542402
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2d09

Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(iv) и висмута(iii)

Изобретение относится к просветляющим тонкопленочным оксидным покрытиям на основе SiO, наносимым на прозрачные стекла для миниатюрных ламп накаливания. Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(IV) и висмута(III) содержит пленкообразующий раствор на основе...
Тип: Изобретение
Номер охранного документа: 0002542997
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9f

Способ получения композиционного металлокерамического покрытия на вентильных металлах и их сплавах

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, например, формирования преобразованных слоев, а именно к процессам микроплазменного оксидирования вентильных металлов и может быть использовано для получения функциональных...
Тип: Изобретение
Номер охранного документа: 0002543659
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3386

Способ получения сорбента на основе алюмината кальция для газохроматографического разделения ароматических полициклических углеводородов

Изобретение относится к области сорбции. Предложен способ получения сорбента для газохроматографического разделения ароматических полициклических углеводородов. Получают алюминат кальция смешиванием в растворе нитрата кальция, нитрата алюминия и кристаллической лимонной кислотой при мольном...
Тип: Изобретение
Номер охранного документа: 0002544665
Дата охранного документа: 20.03.2015
27.06.2015
№216.013.59bd

Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из...
Тип: Изобретение
Номер охранного документа: 0002554514
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a0d

Способ коррекции аберраций объектива

Изобретение может быть использовано в оптических системах наблюдения, фоторегистрации, а также в голографических системах. Способ включает использование корректирующего голограммного оптического элемента, выполненного в виде цифровой голограммы. Позиционируют ПЗС-матрицу за плоскостью...
Тип: Изобретение
Номер охранного документа: 0002554594
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a4c

Способ обнаружения рубинсодержащих кальцифиров

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации. Способ обнаружения рубинсодержащих кальцифиров включает отбор...
Тип: Изобретение
Номер охранного документа: 0002554657
Дата охранного документа: 27.06.2015
Showing 11-20 of 65 items.
20.02.2015
№216.013.2865

Способ приготовления индикаторных углеродсодержащих электродов, модифицированных наночастицами металлов, для вольтамперометрического анализа органических соединений

Изобретение относится к способу приготовления индикаторных углеродсодержащих электродов, модифицированных наночастицами металлов Au, Pt, Pd, Ni, Cu. При этом модифицирование проводится путем осаждения наночастиц металлов полученных методом лазерной абляции металлических мишеней в чистых...
Тип: Изобретение
Номер охранного документа: 0002541798
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ac1

Штамм бактерий desulfovibrio sp. для очистки сточных вод от ионов тяжелых металлов

Изобретение относится к биотехнологии и может быть использовано для очистки промышленных сточных вод машиностроительных, приборостроительных, электротехнических предприятий от повышенных концентраций ионов меди и других тяжелых металлов. Штамм бактерий Desulfovibrio sp. A 4/1 депонирован во...
Тип: Изобретение
Номер охранного документа: 0002542402
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2d09

Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(iv) и висмута(iii)

Изобретение относится к просветляющим тонкопленочным оксидным покрытиям на основе SiO, наносимым на прозрачные стекла для миниатюрных ламп накаливания. Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(IV) и висмута(III) содержит пленкообразующий раствор на основе...
Тип: Изобретение
Номер охранного документа: 0002542997
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9f

Способ получения композиционного металлокерамического покрытия на вентильных металлах и их сплавах

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, например, формирования преобразованных слоев, а именно к процессам микроплазменного оксидирования вентильных металлов и может быть использовано для получения функциональных...
Тип: Изобретение
Номер охранного документа: 0002543659
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3386

Способ получения сорбента на основе алюмината кальция для газохроматографического разделения ароматических полициклических углеводородов

Изобретение относится к области сорбции. Предложен способ получения сорбента для газохроматографического разделения ароматических полициклических углеводородов. Получают алюминат кальция смешиванием в растворе нитрата кальция, нитрата алюминия и кристаллической лимонной кислотой при мольном...
Тип: Изобретение
Номер охранного документа: 0002544665
Дата охранного документа: 20.03.2015
27.06.2015
№216.013.59bd

Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из...
Тип: Изобретение
Номер охранного документа: 0002554514
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a0d

Способ коррекции аберраций объектива

Изобретение может быть использовано в оптических системах наблюдения, фоторегистрации, а также в голографических системах. Способ включает использование корректирующего голограммного оптического элемента, выполненного в виде цифровой голограммы. Позиционируют ПЗС-матрицу за плоскостью...
Тип: Изобретение
Номер охранного документа: 0002554594
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a4c

Способ обнаружения рубинсодержащих кальцифиров

Изобретение относится к области геологии, разработки и использования месторождений полезных ископаемых и может быть использовано на различных этапах поисковых и геолого-разведочных работ для выявления рубиновой минерализации. Способ обнаружения рубинсодержащих кальцифиров включает отбор...
Тип: Изобретение
Номер охранного документа: 0002554657
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5d81

Способ получения мезопористого фтор-допированного диоксида титана в форме анатаза

Изобретение может быть использовано при получении фотокатализатора, носителя для катализатора, фотоактивного покрытия, пигмента на основе диоксида титана. Для получения мезопористого диоксида титана, допированного фтором в атомарном соотношении к титану от 0,35 до 0,7, содержащего только фазу...
Тип: Изобретение
Номер охранного документа: 0002555478
Дата охранного документа: 10.07.2015
+ добавить свой РИД