×
10.08.2015
216.013.6dc7

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к наземным испытаниям, в т.ч. при изготовлении космических аппаратов (КА). КА содержит систему электропитания с бортовыми источниками: солнечными (СБ) и аккумуляторными (АБ) батареями, а также стабилизированным преобразователем напряжения (СПН) с зарядными и разрядными преобразователями. СПН служит для согласования работы СБ и АБ и питания стабильным напряжением модулей служебных систем и полезной нагрузки. Способ предусматривает включение и выключение КА (в т.ч. наземных имитаторов АБ и СБ), автоматизированную выдачу команд управления, допусковый контроль дискретных и аналоговых параметров от системы телеизмерения, параметров бортовой вычислительной системы и др. В процессе проверок КА дополнительно контролируют аналоговые параметры наземных имитаторов АБ и СБ и в совокупности с дискретными и аналоговыми параметрами от системы телеизмерения формируют вторичные параметры для последующего их допускового контроля. В качестве последних используют рассчитанные по определенным формулам величины собственного потребления СПН, зарядных и разрядных преобразователей, а также - падения напряжения в цепях наземных имитаторов АБ и СБ. Вторичные параметры служат для дополнительной оценки работоспособности КА. Техническим результатом изобретения является повышение надежности электрических проверок КА. 9 з.п. ф-лы, 2 ил.

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при изготовлении космических аппаратов (КА).

При изготовлении КА большое внимание уделяется обеспечению высокой степени надежности электрических проверок.

Эта задача может быть решена только при условии обеспечения широких функциональных возможностей и применения многоуровневого контроля технологического процесса электрических проверок КА.

Известен способ электрических проверок КА (патент RU №2245825), реализованный «Автоматизированной испытательной системой для отработки, электрических проверок и подготовки к пуску космических аппаратов».

Известный способ заключается в автоматизированной выдаче технологических команд и радиокоманд, допусковом контроле дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроле поставленных на слежение параметров бортовой вычислительной системы, контроле сопротивления изоляции бортовых шин относительно корпуса, формирования директив оператора в ручном режиме, формировании протокола испытаний, отображения текущего состояния процесса испытаний.

Недостатком известного способа электрических проверок КА является отсутствие защиты от возникновения нештатных ситуаций, связанных с неполным выключением КА при перерывах в работе с ним, в случае возникновения каких-либо неисправностей в бортовой или наземной аппаратуре на различных этапах электрических проверок КА.

Наиболее близким техническим решением является способ электрических проверок КА, патент №2447002 RU, который выбран в качестве прототипа.

Известный способ заключается в проведении включения и выключения КА, включая подключение или отключение бортовых источников электропитания или их наземных имитаторов, автоматизированной выдачи команд управления, допускового контроля дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроля сопротивления изоляции бортовых шин относительно корпуса, формирования директив автоматической программы и директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний, отличающийся тем, что в процессе проведения включения КА, перед подключением бортовых источников электропитания или их наземных имитаторов, дополнительно контролируют электрическое сопротивление между шинами питания КА на предмет соответствия его наперед заданному значению, а при его несоответствии наперед заданному значению включение КА запрещают.

Недостатком известного способа электрических проверок КА является отсутствие контроля собственного потребления стабилизированного преобразователя напряжения с зарядными и разрядными преобразователями системы электропитания КА, а также состояния силовых цепей от имитаторов бортовых источников электропитания (имитаторов солнечных и аккумуляторных батарей) в процессе проведения электрических проверок КА. Это снижает надежность электрических проверок КА. Так в случае появления неисправностей стабилизированного преобразователя напряжения, связанных с его повышенным потреблением, или повреждением, или некачественной стыковки соединителей в цепях бортовых источников электропитания, бортовая телеметрия может «не заметить» этого факта, так как оценивает значения аналоговых параметров в достаточно широком диапазоне их штатного функционирования, при этом они могут существенно не измениться, и, соответственно, дефект может быть пропущен.

Задачей заявляемого изобретения является повышение надежности электрических проверок КА.

Поставленная задача решается тем, что при проведении электрических проверок КА, содержащего систему электропитания с бортовыми источниками электропитания (солнечными и аккумуляторными батареями) и стабилизированным преобразователем напряжения с зарядными и разрядными преобразователями, для согласования работы солнечных и аккумуляторных батарей и обеспечения питанием стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, заключающийся в проведении включения и выключения КА, включая подключение и отключение наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей), автоматизированной выдачи команд управления, допускового контроля дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроля сопротивления изоляции бортовых шин относительно корпуса, формирования директив автоматической программы и директив оператора в ручном режиме, формирования протокола испытаний, отображения текущего состояния процесса испытаний, в процессе проведения электрических проверок космического аппарата дополнительно контролируют аналоговые параметры наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей) и в совокупности с дискретными и аналоговыми параметрами по данным бортовой системы телеизмерения формируют вторичные параметры для последующего их допускового контроля для дополнительной оценки работоспособности космического аппарата, причем в качестве вторичных параметров используют расчеты собственного потребления стабилизированного преобразователя напряжения, а также собственного потребления зарядных и разрядных преобразователей. При этом для формирования вторичных параметров используют аналоговые параметры по данным бортовой системы телеизмерения:

Uбс - общее напряжение солнечной батареи, B;

Iбс - общий ток солнечной батареи, A;

Uн1 - напряжение на первой нагрузке, B;

Iн1 - ток первой нагрузки, A;

Uн2(1÷n-1) - напряжение на последующих нагрузках, B;

Iн2(1÷n-1) - токи в последующих нагрузках, A;

Uаб(1, 2) - напряжение аккумуляторной батареи 4/1 и 4/2 соответственно, B;

Iаб(1, 2) - ток аккумуляторной батареи 4/1 и 4/2 соответственно, A, и аналоговые параметры наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей):

Uибс (1÷m) - выходное напряжение секции имитатора солнечной батареи, B;

Iибс(1÷m) - выходной ток секции имитатора солнечной батареи, A;

Uиаб(1, 2) - выходное напряжение имитатора аккумуляторной батареи, B;

Iиаб(1, 2)3 - входной ток имитатора аккумуляторной батареи в режиме заряда, A;

Iиаб(1, 2)p - выходной ток имитатора аккумуляторной батареи в режиме разряда, A. Кроме того, в качестве вторичного параметра используют расчет собственного потребления стабилизированного преобразователя напряжения при питании нагрузки от солнечных батарей по формуле:

ΔPибс=ΣUибс(1÷m)·Iибс(1÷m)-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1)-ΣUиаб(1, 2)·Iиаб(1, 2)3, а также расчет собственного потребления стабилизированного преобразователя напряжения при питании нагрузки от аккумуляторных батарей по формуле:

ΔPиаб=ΣUиаб(1, 2)·Iиаб(1, 2)p-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1), расчет собственного потребления стабилизированного преобразователя напряжения при питании нагрузки от солнечных и аккумуляторных батарей по формуле:

ΔPибс-иаб=ΣUибс(1÷m)·Iибс(1÷m)+ΣUиаб(1, 2)·Iиаб(1, 2)p-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1), расчет собственного потребления зарядных преобразователей по формуле:

ΔPзп1, 2=Uбс·ΣIиаб(1, 2)3-ΣUиаб(1, 2)·Iиаб(1, 2)3, расчет собственного потребления разрядных преобразователей по формуле:

ΔPрп1, 2=ΣUиаб(1, 2)·Iиаб(1, 2)p-Uбc·ΣIиаб(1, 2)p, расчет падения напряжения по цепям от имитаторов солнечных батарей по формуле:

ΔUбсi=Uбс-Uибсi, расчет падения напряжения по цепям от имитаторов аккумуляторных батарей по формуле:

ΔUаб(1, 2)p=Uаб(1, 2)-Uиаб(1, 2) - в режиме разряда

и

ΔUаб(1, 2)3=Uиаб(1, 2)-Uаб(1, 2) - в режиме заряда.

Действительно, при проведении электрических проверок КА проводится допусковый контроль дискретных и аналоговых параметров по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроль сопротивления изоляции бортовых шин относительно корпуса, формирование директив автоматической программы и директив оператора в ручном режиме, формирование протокола испытаний, отображение текущего состояния процесса испытаний. В то же время проводится управление и контроль работы наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей). Это позволяет организовать оценку работоспособности КА, используя весь объем информации (бортовой и наземной), создав вторичные параметры для расширенной оценки каких-либо характеристик КА в изменяющихся в достаточно узком контрольном диапазоне.

На фиг.1 приведена блок-схема наземной системы управления и контроля КА в процессе проведения его электрических проверок.

Космический аппарат (КА) 1 содержит, в частности, систему электропитания с бортовыми источниками электропитания (солнечными и аккумуляторными батареями) и стабилизированным преобразователем напряжения с зарядными и разрядными преобразователями для согласования работы солнечных и аккумуляторных батарей и обеспечения питанием стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, бортовую систему телеизмерения, бортовую ЭВМ (на схеме не показано).

В процессе электрических проверок КА вместо солнечных и аккумуляторных батарей подключают имитаторы солнечных батарей (ИБС) 2 со встроенными ЭВМ 2-1 и имитаторы аккумуляторных батарей (ИАБ) 3 со встроенными ЭВМ 3-1.

Система управления и контроля электрических проверок КА содержит:

4 - автоматизированный испытательный комплекс (АИК);

5 - ЭВМ АИК (блок управления и отображения информации с АИК).

Встроенные в ИБС и ИАБ ЭВМ 2-1 и 3-1 связаны по межмашинному обмену (по Ethernet) с ЭВМ АИК 5.

АИК 4 совместно с ЭВМ АИК 5 осуществляет автоматизированную выдачу команд управления, допусковый контроль дискретных и аналоговых параметров КА 1 по данным бортовой системы телеизмерения и контроля поставленных на слежение параметров бортовой вычислительной системы, контроль сопротивления изоляции бортовых шин относительно корпуса, формирование директив автоматической программы и директив оператора в ручном режиме, формирование протокола испытаний, отображения текущего состояния процесса испытаний.

Связь ЭВМ АИК 5 с ЭВМ ИБС 2-1 и ЭВМ ИАБ 3-1 позволяет управлять текущими режимами работы ИБС 2 и ИАБ 3 и получать оперативную информацию об их текущих выходных параметрах (напряжение, ток).

Рассмотрим формирование вторичных параметров на примере конкретной структуры автономной системы электропитания КА.

На фиг. 2 приведена функциональная схема автономной системы электропитания с «n» номиналами выходного напряжения, «m» секциями солнечных батарей и двумя аккумуляторными батареями.

Устройство содержит солнечную батарею (первичный источник ограниченной мощности) 1, состоящую из секций 11, 12, …1m, подключенную к нагрузке 2 через диоды РД1, РД2,…РДm в цепи каждой секции соответственно и выходной фильтр 3. В общей силовой цепи солнечной батареи установлен измерительный токовый шунт Iбс для измерения текущего суммарного тока солнечной батареи. В цепи нагрузки 2 установлен измерительный токовый шунт Iн1.

Аккумуляторные батареи 4/1 и 4/2 подключены через зарядные преобразователи 5/1 и 5/2 и через разрядные преобразователи 6/1 и 6/2 к входу выходного фильтра 3, при этом входы разрядных преобразователей подключены к выходу выходного фильтра 3. Параллельный стабилизированный преобразователь 7 входом подключен к выходу выходного фильтра 3, а силовым транзисторным ключом, разделенного также на «m» единичных силовых транзисторных ключей, подключен к каждой соответствующей секции первичного источника ограниченной мощности. Кроме того, к клеммам «+» и «-» нагрузки 2 подключено (n-1) сериесных преобразователей 81, 82,….8n-1, к выходу которых подключены нагрузки 21, 22,….2n-1, где n - число номиналов напряжения в автономной системе электропитания. В цепи каждой нагрузки 21, 22,…2n-1 установлены измерительные токовые шунты Iн2 (1÷[n-1]).

Зарядный преобразователь состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе Tp, транзисторах T1 и Т2 и выпрямителя на диодах D1 и D2. В силовой цепи заряда установлен измерительный токовый шунт Iаб для измерения тока заряда, а также тока разряда.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Параллельный стабилизированный преобразователь 7 состоит из «m» единичных силовых транзисторных ключей K1, K2,…Km, управляемых общей схемой управления 13.

Сериесные преобразователи 81, 82,….8n-1 состоят из регулирующих ключей 14, управляемых схемами управления 15 и выходных фильтров 16.

Схемы управления преобразователями 10, 12, 13, 15 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения.

В бортовую телеметрию (бортовую систему телеизмерения) выводятся, в частности, следующие аналоговые параметры системы электропитания:

Uбс - общее напряжение солнечной батареи, B;

Iбс - общий ток солнечной батареи, A;

Uн1 - напряжение на первой нагрузке, B;

Iн1 - ток первой нагрузки, A;

Uн2(1÷n-1) - напряжение на последующих нагрузках, B;

Iн2(1÷n-1) - токи в последующих нагрузках, A;

Uаб(1, 2) - напряжение аккумуляторной батареи 4/1 и 4/2 соответственно, B;

Iаб(1, 2) - ток аккумуляторной батареи 4/1 и 4/2 соответственно, A.

Точки для измерения напряжений для бортовой телеметрии показаны стрелками на фиг.2.

В процессе проведения электрических проверок КА вместо секций солнечных батарей подключают секции имитаторов солнечных батарей (ИБС), а вместо аккумуляторных батарей соответственно - имитаторы аккумуляторных батарей (ИАБ).

Из ИБС и ИАБ выводятся, в частности, следующие аналоговые параметры:

Uибс(1÷m) - выходное напряжение секции имитатора солнечной батареи, B;

Iибс(1÷m) - выходной ток секции имитатора солнечной батареи, А;

Uиаб(1, 2) - выходное напряжение имитатора аккумуляторной батареи, B;

Iиаб(1, 2)3 - входной ток имитатора аккумуляторной батареи в режиме заряда, A;

Iиаб(1, 2)p - выходной ток имитатора аккумуляторной батареи в режиме разряда, A.

Вторичные параметры формируются следующим образом.

В качестве вторичных параметров используют расчеты собственного потребления стабилизированного преобразователя напряжения, собственного потребления зарядных и разрядных преобразователей, а так же падения напряжения по цепям наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей).

1. Собственное потребление стабилизированного преобразователя напряжения при питании нагрузки от солнечных батарей:

ΔPибс=ΣUибс(1÷m)·Iибс(1÷m)-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1)-ΣUиаб(1, 2)·Iиаб(1, 2)3.

2. Собственное потребление стабилизированного преобразователя напряжения при питании нагрузки от аккумуляторных батарей:

ΔPиаб=ΣUиаб(1, 2)·Iиаб(1, 2)p-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1).

3. Собственное потребление стабилизированного преобразователя напряжения при питании нагрузки от солнечных и аккумуляторных батарей:

ΔPибс-иаб=ΣUибс(1÷m)·Iибс(1÷m)+ΣUиаб(1, 2)·Iиаб(1, 2)p-Uн1·Iн1-ΣUн2(1÷n-1)·Iн2(1÷n-1).

4. Собственное потребление зарядных преобразователей:

ΔPзп1, 2=Uбс·ΣIиаб(1, 2)3-ΣUиаб(1, 2)·Iиаб(1, 2)3.

5. Собственное потребление разрядных преобразователей:

ΔPрп1, 2=ΣUиаб(1, 2)·Iиаб(1, 2)p-Uбс·ΣIиаб(1, 2)p.

5. Падение напряжения по цепям от имитаторов солнечных батарей:

ΔUбсi=Uбс-Uибсi.

6. Падение напряжения по цепям от имитаторов аккумуляторных батарей:

ΔUаб(1, 2)p=Uаб(1, 2)-Uиаб(1, 2) - в режиме разряда

и

ΔUаб(1, 2)3=Uиаб(1, 2)-Uаб(1, 2) - в режиме заряда.

Следует отметить, что полученные расчетные значения собственного потребления содержат в себе некоторую погрешность, обусловленную падением напряжения в наземных кабелях от имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей). Однако их величина несущественна, так как наземные кабели выполняются (как правило) с максимальным сечением, и, кроме того, в данном случае важна качественная оценка величины приведенных вторичных параметров.

В зависимости из особенностей конкретной системы электропитания КА и задач электрических проверок могут быть созданы другие вторичные параметры в рамках приведенных первичных аналоговых параметров по данным бортовой системы телеизмерения и аналоговых параметров наземных имитаторов бортовых источников электропитания (солнечных и аккумуляторных батарей).

Таким образом, предлагаемый способ электрических проверок КА повышает надежность электрических проверок КА.


СПОСОБ ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ЭЛЕКТРИЧЕСКИХ ПРОВЕРОК КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 171-180 of 237 items.
08.04.2019
№219.016.fe55

Устройство управления вектором тяги двигателя коррекции

Изобретение относится к космической технике, а именно к системам поворота блока коррекции в составе космического аппарата (КА), и может быть использовано в аппаратах различных видов, а также в качестве опорно-поворотного устройства для наземных устройств. Устройство управления вектором тяги...
Тип: Изобретение
Номер охранного документа: 0002684229
Дата охранного документа: 04.04.2019
08.04.2019
№219.016.fe98

Способ интеллектуального анализа осциллограмм

Изобретение относится к способам распознавания образов. Технический результат заключается в расширении арсенала средств. Предложен способ интеллектуального графического обучения системы распознавания образов, при котором воспроизводят осциллограмму целиком либо частично на дисплее аналитической...
Тип: Изобретение
Номер охранного документа: 0002684203
Дата охранного документа: 04.04.2019
19.04.2019
№219.017.2b8d

Способ заряда комплекта из "n" литий-ионных аккумуляторных батарей в составе геостационарного искусственного спутника земли

Использование: в области электротехники. Технический результат – обеспечение восстановления полной энергоемкости аккумуляторных батарей (АБ), что приведет к повышению живучести искусственного спутника Земли (ИСЗ), а также обеспечит преемственность зарядных устройств, что позволит снизить его...
Тип: Изобретение
Номер охранного документа: 0002684905
Дата охранного документа: 16.04.2019
20.04.2019
№219.017.3526

Способ регулировки значения потребляемого тока инициирующих устройств

Изобретение относится к области защиты кабельной сети и бортового оборудования от воздействия повышенных токовых нагрузок. Для регулировки тока в качестве резистивного элемента применяется отрезок провода из электропроводного материала с высоким удельным сопротивлением и термостойкой изоляции,...
Тип: Изобретение
Номер охранного документа: 0002685405
Дата охранного документа: 17.04.2019
02.05.2019
№219.017.4877

Устройство удержания подвижных элементов конструкции космического аппарата

Изобретение относится к области механизмов для удержания и дистанционного разделения трансформируемых механических систем или отделяемых элементов конструкции космических аппаратов (КА). Устройство удержания подвижных элементов конструкции КА содержит корпус и воронку, соединяемые друг с другом...
Тип: Изобретение
Номер охранного документа: 0002686804
Дата охранного документа: 30.04.2019
24.05.2019
№219.017.5d81

Способ изготовления электронасосного агрегата

Изобретение относится к машиностроительной гидравлике, конкретно к способам изготовления электронасосных агрегатов (ЭНА) для систем терморегулирования самолетов и космических аппаратов. В способе изготовления ЭНА диафрагму, разделяющую рабочие колеса, изготавливают заодно с обоймой герметично...
Тип: Изобретение
Номер охранного документа: 0002688872
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5e03

Способ снижения интенсивности эффекта распыления материала в вакуумной камере при испытаниях электрореактивных двигателей и комплекс для его реализации

Заявляемое изобретение относится к областям техники, связанным с испытаниями электрореактивных двигателей с высоким удельным импульсом, например стационарных плазменных и ионных двигателей. Способ снижения интенсивности эффекта распыления материала в вакуумной камере при проведении огневых...
Тип: Изобретение
Номер охранного документа: 0002688870
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5ece

Космическая платформа

Изобретение относится к области машиностроения, а более конкретно к космическим платформам. Космическая платформа (КП) содержит силовую конструкцию корпуса (СКК), выполненную в виде сетчатой конструкции из композиционных материалов, на которой размещен приборный отсек, при этом торцы СКК...
Тип: Изобретение
Номер охранного документа: 0002688630
Дата охранного документа: 21.05.2019
31.05.2019
№219.017.7022

Универсальный интерфейс для монтажа оборудования с вантовой системой крепления

Изобретение относится к силовым конструкциям для установки, в частности, на борту космического аппарата различного оборудования с помощью вант. Интерфейс состоит из шпангоута с набором отверстий для его крепления на монтажных элементах разной конфигурации. С наружной стороны шпангоута...
Тип: Изобретение
Номер охранного документа: 0002689892
Дата охранного документа: 29.05.2019
07.06.2019
№219.017.74fa

Опорный узел сотовой панели

Изобретение относится к области машиностроения и касается опорного узла сотовой панели, который может быть использован для космических конструкций, в частности сотовых панелей, предназначенных для изготовления корпусов негерметичных космических аппаратов (КА), которые имеют опорные узлы для...
Тип: Изобретение
Номер охранного документа: 0002690811
Дата охранного документа: 05.06.2019
Showing 151-155 of 155 items.
10.07.2019
№219.017.b029

Способ эксплуатации литий-ионной аккумуляторной батареи в составе искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей (ЛИАБ). Техническим результатом изобретения является повышение эффективности использования ЛИАБ и увеличение срока службы. Согласно изобретению способ...
Тип: Изобретение
Номер охранного документа: 0002403656
Дата охранного документа: 10.11.2010
05.09.2019
№219.017.c75a

Система электропитания космического аппарата

Использование: в области электротехники, для электропитания космических аппаратов (КА). Технический результат - повышение функциональной надежности системы электропитания. Система электропитания космического аппарата состоит из солнечной батареи, подключенной своими плюсовой и минусовой...
Тип: Изобретение
Номер охранного документа: 0002699084
Дата охранного документа: 03.09.2019
01.11.2019
№219.017.dcc6

Система электроснабжения космического аппарата с экстремальным регулированием мощности солнечной батареи

Система электроснабжения космического аппарата содержит солнечную батарею (СБ), датчик тока, цифровую систему управления с экстремальным регулятором мощности СБ, регулятор напряжения, выполненный в виде мостового инвертора с входным С-фильтром, трансформатор с первичной и вторичными обмотками,...
Тип: Изобретение
Номер охранного документа: 0002704656
Дата охранного документа: 30.10.2019
10.11.2019
№219.017.e07d

Способ питания нагрузки постоянным током в автономных системах электропитания космических аппаратов для широкого диапазона мощности нагрузки и автономная система электропитания для его реализации

Изобретение относится к области космической техники и может быть использовано при проектировании космических аппаратов. Преобразователи напряжения, зарядные и разрядные устройства выполняют в виде единичных модулей. Модули рассчитывают исходя из наименьшей потребительской потребности...
Тип: Изобретение
Номер охранного документа: 0002705537
Дата охранного документа: 08.11.2019
14.03.2020
№220.018.0bc8

Способ изготовления космического аппарата

Изобретение относится к космической технике, а более конкретно созданию космических аппаратов (КА). Способ изготовления КА, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в...
Тип: Изобретение
Номер охранного документа: 0002716471
Дата охранного документа: 11.03.2020
+ добавить свой РИД