×
10.07.2019
219.017.b029

СПОСОБ ЭКСПЛУАТАЦИИ ЛИТИЙ-ИОННОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей (ЛИАБ). Техническим результатом изобретения является повышение эффективности использования ЛИАБ и увеличение срока службы. Согласно изобретению способ эксплуатации ЛИАБ заключается в проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры ЛИАБ посредством встроенного нагревателя, управляемого в зависимости от текущей температуры ЛИАБ. Управление работой встроенного нагревателя проводят в зависимости от текущей температуры ЛИАБ непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения ЛИАБ при проведении циклов разряда-заряда, от изменения номинального значения температуры из-за деградации характеристик системы терморегулирования. 3 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Преимущества литий-ионной аккумуляторной системы в сравнении с никель-водородными системами делают ее привлекательной для применения на ИСЗ. Однако, реализовать энергетические и ресурсные характеристики литий-ионных аккумуляторных батарей можно только при организации эффективного контроля и управления по напряжению и температуре, проведении специальных работ по балансировке (выравниванию запасенной энергии) аккумуляторов в батарее, заряде аккумуляторной батареи оптимальными токами.

Для того чтобы заряжать литий-ионный аккумулятор, необходимо, чтобы его температура была выше температуры замерзания электролита. При эксплуатации литий-ионных аккумуляторных батарей в условиях низких температур снижается емкость, уменьшается рабочее напряжение. Кроме того, при низких температурах имеет место начальная просадка напряжения. Литий-ионные аккумуляторы лучше работают при высокой температуре, которая противодействует увеличению внутреннего сопротивления аккумулятора, являющемуся результатом старения. Но повышенные температуры, в свою очередь, способствует ускоренному старению аккумулятора, с дальнейшим увеличением внутреннего сопротивления. Повышение температуры эксплуатации (в пределах рабочего диапазона) также может увеличить скорость побочных процессов, затрагивающих границу раздела электрод - электролит, и повысить скорость уменьшения разрядной емкости с циклами. Количество циклов заряда-разряда не так сильно влияют на ресурс литий-ионной батареи, как возраст и температурный диапазон.

Наиболее оптимальным температурным диапазоном работы литий-ионной аккумуляторной батареи является температурный диапазон 15-25°C (см. Д.А.Хрусталев. Аккумуляторы. М.: Изумруд, 2003 г.).

Известен способ эксплуатации литий-ионных аккумуляторных батарей, в которых имеется функция управления температурой воздуха, окружающего аккумулятор (внешней температурой). В опубликованной заявке Японии JP 8185897 раскрывается зарядное устройство, в котором устанавливается нижняя температурная граница, которая равна или выше заданного значения, и устанавливается верхняя температурная граница, которая равна или ниже заданного значения.

Наиболее близким техническим решением является способ, реализованный устройством для заряда литиевых аккумуляторов для применения на ИСЗ, который принят в качестве прототипа. В заявке Японии JP 2001155783 раскрывается устройство для заряда литиевых аккумуляторов для применения на ИСЗ, которое препятствует замерзанию при низких температурах аккумуляторов с неводным электролитом и препятствует ухудшению характеристик аккумуляторов при высоких температурах, обеспечивая тем самым стабильные заряд-разрядные характеристики. Устройство имеет в составе нагревательные элементы (блок коммутаторов) и систему управления. Включение нагревательного элемента происходит при достижении нижнего уровня температурного диапазона, отключение происходит при достижении верхнего уровня температурного диапазона. Коммутация осуществляется посредством электромеханических реле (блок коммутаторов).

Известный способ позволяет удерживать температуру аккумуляторной батареи в рабочем диапазоне.

Однако данный способ имеет ряд недостатков.

1. В системе терморегулирования происходит температурное циклирование (температура циклически изменяется от нижнего до верхнего значения рабочего температурного диапазона). Большой диапазон температуры при штатной эксплуатации (15-25)°C уменьшает ресурс аккумуляторной батареи.

2. При проведении подогрева аккумуляторной батареи совместно с проведением заряд-разрядных циклов возможен выход температуры аккумуляторной батареи из заданного диапазона температур ввиду инерционности тепловых процессов.

3. В известном способе нагрев происходит на полную мощность нагревательных элементов. Нагрев на полную мощность и циклирование снижает ресурс нагревательных элементов и системы в целом.

Задачей заявляемого изобретения является повышение эффективности использования литий-ионной аккумуляторной батареи и увеличение срока службы аккумуляторной батареи и системы терморегулирования.

Эта задача решается тем, что при проведении зарядов, разрядов, хранении в заряженном состоянии, контроле и регулировании температуры аккумуляторов посредством встроенного нагревателя, управляемого в зависимости от текущей температуры аккумуляторной батареи, управление работой встроенного нагревателя проводят в зависимости от текущей температуры аккумуляторной батареи непрерывно, с помощью широтно-импульсного модулятора с обратной связью, в заданном контрольном диапазоне температур. Кроме того, заданный контрольный диапазон температуры корректируют в процессе эксплуатации в большую или меньшую сторону в зависимости от текущей температуры, от тепловыделения аккумуляторной батареи при проведении заряд-разрядных циклов, от изменения установившегося равновесного значения температуры из-за деградации характеристик системы терморегулирования.

Суть изобретения поясняется чертежами, где на Фиг.1 изображена зависимость температуры аккумуляторной батареи от времени в процессе работы системы терморегулирования при начальной температуре -10°C, также на графике указан оптимальный температурный диапазон (15-25)°C, на Фиг.2 изображена зависимость температуры аккумуляторной батареи от времени, в процессе работы системы терморегулирования, при начальной температуре 19°C и проведении цикла заряда аккумуляторной батареи (время начала заряда 3 часа, продолжительность 7 часов). Построение выполнено с учетом энергии, подводимой на подогрев аккумуляторной батареи и энергии, отводимой через радиатор охлаждения (характеристики упомянуты выше). Построение выполнено без учета инерционности тепловых процессов, на графике Фиг.3 представлена передаточная характеристика широтно-импульсного модулятора, отображающая зависимость коэффициента заполнения от управляющего напряжения.

Действительно, в заявляемом изобретении управление нагревательными элементами осуществляется непрерывно по текущей температуре аккумуляторной батареи. Это позволяет непрерывно регулировать мощность тепловыделения нагревательных элементов в зависимости от текущей температуры аккумуляторной батареи. Если в исходном состоянии температура аккумуляторной батареи ниже рабочего диапазона температур (Фиг.1), то температура будет расти линейно (мощность нагревательных элементов будет постоянной и максимальной) до момента достижения температурой нижней уставки температуры. Дальнейший рост температуры будет снижать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Если в исходном состоянии температура аккумуляторной батареи выше рабочего диапазона температур, то температура будет падать линейно (нагревательные элементы выключены) до момента достижения температурой верхней уставки температуры. Дальнейшее падение температуры будет повышать мощность нагревательных элементов, обеспечивая тем самым плавный подход к установившемуся равновесному значению температуры. Установившееся равновесное значение может иметь значение в пределах температурного диапазона.

Данная задача согласуется с законом управления широтно-импульсного модулятора. Когда начальная температура ниже температурного диапазона, до момента достижения температурой нижней уставки коэффициент заполнения широтно-импульсного модулятора равен единице и транзисторный ключ открыт, тем самым на нагревателе выделяется полная мощность. Дальнейший рост температуры будет уменьшать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет уменьшаться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Когда начальная температура выше температурного диапазона до момента достижения температурой верхней уставки температуры, коэффициент заполнения широтно-импульсного модулятора равен нулю и транзисторный ключ закрыт, тем самым на нагревателе не выделяется мощность. Дальнейшее падение температуры будет увеличивать коэффициент заполнения широтно-импульсного модулятора и время открытого состояния транзисторного ключа за период будет увеличиваться. Когда мощность, выделяемая на нагревателе, сравняется с мощностью, которая снимается через радиатор охлаждения, наступит равновесие и установится постоянная скважность широтно-импульсного модулятора. При данной скважности установится равновесная температура. Цепь обратной связи широтно-импульсного модулятора должна обеспечивать закон изменения напряжения управления от температуры таким образом, чтобы напряжению U0 соответствовала температура, равная температуре нижней уставки. А также обеспечивался необходимый наклон характеристики в диапазоне ΔU (Фиг.3).

При проведении циклов разряда-заряда вследствие того, что выделяется энергия (саморазогрев аккумуляторов), установившееся равновесное значение температуры будет изменяться. В случае проведения цикла разряда при постоянном токе номинальное значение температуры после переходного процесса примет новое постоянное значение. При проведении цикла заряда установившееся равновесное значение температуры будет расти с ростом напряжения заряда (заряд при постоянном токе).

Для обеспечения большей надежности системы и для компенсации изменения установившегося равновесного значения температуры, вызванного изменением характеристик системы (изменение тепловыделения аккумуляторной батареи при заряде-разряде, изменение характеристик системы охлаждения аккумуляторной батареи и характеристик самой аккумуляторной батареи), предлагается введение возможности корректировки параметров обратной связи. Изменяемым параметром является температурный диапазон. Изменение температурного диапазона осуществляется по программе с помощью бортовой электронно-вычислительной машины (ЭВМ).

В заявляемом изобретении управление температурным диапазоном осуществляется тремя способами.

По первому способу изменение температурного диапазона осуществляется дискретно по текущей температуре. Данный способ позволяет уменьшить время переходного процесса (осуществляя нелинейный закон изменения мощности нагревательного элемента от температуры).

При исходной температуре ниже нижней уставки бортовая ЭВМ задает температурный диапазон выше оптимального (15-25°C). По мере роста температуры (нагреватель управляется широтно-импульсным модулятором) выше нижней уставки бортовая ЭВМ будет дискретно понижать температурный диапазон до оптимального. При исходной температуре выше верхней уставки бортовая ЭВМ задает температурный диапазон ниже оптимального. По мере падения температуры (нагреватель управляется широтно-импульсным модулятором) ниже верхней уставки бортовая ЭВМ будет дискретно повышать температурный диапазон до оптимального.

По второму способу изменение температурного диапазона осуществляется дискретно по параметрам работы аккумуляторной батареи. Данный способ позволяет улучшить стабилизацию температуры (введением обратной связи по основным возмущающим факторам изменения установившегося равновесного значения температуры).

При проведении заряд-разрядных циклов, когда на аккумуляторной батарее идет процесс саморазогрева (вследствие которого изменяется установившееся равновесное значение температуры), происходит изменение рабочего температурного диапазона. Это позволяет при изменившемся равновесном значении температуры относительно рабочего диапазона оставить установившееся равновесное значение температуры на том же уровне за счет изменения рабочего диапазона. При проведении заряда мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, линейно растет с ростом напряжения заряда. При разряде мощность, выделяющаяся за счет саморазогрева аккумуляторной батареи, зависит от тока разряда. Предлагается изменять температурный диапазон в зависимости от параметров: тока разряда аккумуляторной батареи и напряжения заряда (при постоянном токе заряда аккумуляторной батареи).

По третьему способу изменение температурного диапазона осуществляется дискретно по радиокомандам с Земли. Данный способ позволяет компенсировать изменение установившегося равновесного значения температуры за счет неконтролируемых факторов и деградации характеристик систем.

В процессе эксплуатации ИСЗ на Землю по радиокомандам передается информация о состоянии аккумуляторной батареи, в том числе и текущая температура. В случае если установившееся равновесное значение температуры меньше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на повышение оптимального температурного диапазона. В случае если установившееся равновесное значение температуры больше оптимальной температуры, передается радиокоманда с Земли в бортовую ЭВМ на понижение оптимального температурного диапазона.

Заявляемое устройство позволяет производить стабилизацию температуры аккумуляторной батареи по наиболее сильным возмущающим факторам (саморазогрев аккумуляторной батареи) и по принципу обратной связи, когда в качестве управляющего сигнала нагревательных элементов используется сигнал, пропорциональный стабилизируемой температуре.

На чертеже, фиг.4, приведена функциональная схема автономной системы электропитания, включающая систему регулирования температуры аккумуляторной батареи.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов (напряжения, давления, температуры) 7, связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

Параллельно нагрузке 2 подключено устройство нагрева аккумуляторной батареи 8, связанное входом с устройством контроля аккумуляторов 7 и нагрузкой 2 (бортовой ЭВМ). А выходом с аккумуляторной батареей 4 (тепловая связь).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 9.

Зарядный преобразователь 5 состоит из регулирующего ключа 10, управляемого схемой управления 11, вольтодобавочного узла, выполненного на трансформаторе Tp, транзисторах T1 и T2, и выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 12, управляемого схемой управления 13.

Устройство нагрева аккумуляторной батареи 8 состоит из регулирующего ключа 14, управляемого схемой управления 15 и нагревательного элемента Rн.

Преобразователь напряжения 3 состоит из регулирующего ключа 16, управляемого схемой управления 17, входного фильтра C1 и выходного фильтра на диоде D, дросселе L и конденсаторе C.

Схемы управления преобразователями 11, 13, 17, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 11 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 9 и нагрузкой 2 (с командно-измерительной радиолинией).

Схема управления преобразователем 15 выполнена в виде широтно-импульсного модулятора, входом подключенного к устройству контроля аккумуляторов 7 и к нагрузке 2 (бортовой ЭВМ).

Устройство контроля аккумуляторов 7 контролирует текущие емкость, напряжение и температуру аккумуляторов и передает информацию об их состоянии в нагрузку (бортовую ЭВМ), а сигнал, пропорциональный температуре, - в схему управления 15.

Устройство работает следующим образом.

Устройство контроля аккумуляторов 7 контролирует текущее состояние температуры батарей и выдает сигнал в схему управления 15, которая обеспечивает вход в заданный рабочий диапазон температуры аккумуляторной батареи и удержание температуры в этом диапазоне.

В случае включения циклов разряда-заряда аккумуляторных батарей нагрузкой (бортовую ЭВМ) выдается сигнал в схему управления 15, которая обеспечивает изменение температурного рабочего диапазона.

Телеметрические данные о состоянии аккумуляторной батареи поступают по командно-измерительной радиолинии на Землю. При необходимости, по радиокомандам с Земли рабочий температурный диапазон может быть изменен в большую или меньшую сторону.

Таким образом, предлагаемый способ позволяет стабилизировать температуру аккумуляторной батареи в оптимальном рабочем температурном диапазоне (обеспечивающем лучшие характеристики аккумуляторной батареи) без циклирования температуры (колебаний температуры от нижней до верхней границы рабочего диапазона).

Результатом является повышение эффективности использования литий-ионной аккумуляторной батареи за счет более полной стабилизации температуры около оптимальной, обеспечивающей наилучшие энергетические и ресурсные показатели аккумуляторной батареи, что позволяет увеличить срок службы автономной системы электропитания и ИСЗ в целом.

Источник поступления информации: Роспатент

Showing 1-10 of 83 items.
10.01.2013
№216.012.17be

Устройство для нанесения клея на изделие

Изобретение относится к устройствам для нанесения жидких клеев и герметиков на изделия и может быть использовано в различных технологических процессах, в частности, для нанесения расплава клея на поверхность сотового заполнителя перед склеиванием. В устройстве для нанесения клея на изделие...
Тип: Изобретение
Номер охранного документа: 0002471570
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1d4b

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным (6), промежуточным (7) и тихоходным (8) планетарными...
Тип: Изобретение
Номер охранного документа: 0002472993
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2639

Режущий узел мясорубки

Изобретение относится к устройствам для измельчения мясопродуктов и может быть использовано на мясоперерабатывающих заводах и в быту с достижением технического результата, заключающегося в повышении режущей эффективности при взаимодействии кромок лезвий ножа с кромками отверстий решетки и...
Тип: Изобретение
Номер охранного документа: 0002475305
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2dc2

Способ регулирования и стабилизации давления в рабочих установках сильфонного типа

Изобретение относится к области космической техники и может быть использовано для стабилизации заданного уровня тяги двигателей коррекций движения космического аппарата. Бак с рабочим телом (БРТ) имеет три емкости. Весь газ наддува (ГН) в начале находится в дополнительной емкости постоянного...
Тип: Изобретение
Номер охранного документа: 0002477245
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.33fa

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах механических систем космических аппаратов, в приводах другого назначения и в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор с быстроходным...
Тип: Изобретение
Номер охранного документа: 0002478849
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fb

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве электропривода, например, на космическом аппарате. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (1), редуктор, включающий входной вал (4), предступень (5), быстроходный (6),...
Тип: Изобретение
Номер охранного документа: 0002478850
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fc

Электропривод с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в электроприводах раскрытия крупногабаритных трансформируемых механических систем космических аппаратов, а также в других областях техники. Электропривод с трехступенчатым планетарным редуктором содержит электродвигатель (4),...
Тип: Изобретение
Номер охранного документа: 0002478851
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fd

Способ работы трехступенчатого планетарного редуктора

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы трехступенчатого планетарного редуктора заключается в передаче крутящего момента от быстроходного вала к тихоходному посредством...
Тип: Изобретение
Номер охранного документа: 0002478852
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33fe

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ работы трехступенчатого планетарного редуктора заключается в передаче крутящего момента от электродвигателя (1) к выходному валу (23)...
Тип: Изобретение
Номер охранного документа: 0002478853
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.33ff

Способ работы электропривода с планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в планетарном редукторе. Способ работы электропривода с планетарным редуктором заключается в передаче крутящего момента от входного вала (4) к выходному (20) посредством последовательно...
Тип: Изобретение
Номер охранного документа: 0002478854
Дата охранного документа: 10.04.2013
Showing 1-10 of 84 items.
27.02.2013
№216.012.2cb5

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника Земли от солнечной...
Тип: Изобретение
Номер охранного документа: 0002476972
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.32c2

Способ изготовления космического аппарата

Изобретение относится к сборке и испытаниям бортовых систем космического аппарата (КА), преимущественно системы электропитания телекоммуникационного КА. Последняя содержит солнечные и аккумуляторные батареи, а также стабилизированный преобразователь напряжения (СПН) для согласования работы...
Тип: Изобретение
Номер охранного документа: 0002478537
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3805

Способ заряда литий-ионной аккумуляторной батареи из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ). Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002479894
Дата охранного документа: 20.04.2013
20.06.2013
№216.012.4e58

Способ эксплуатации герметичной никель-водородной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации герметичных никель-водородных аккумуляторных батарей, преимущественно в автономных системах электропитания ИСЗ. Техническим результатом изобретения является повышение функциональной надежности...
Тип: Изобретение
Номер охранного документа: 0002485638
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5231

Способ эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в системах электропитания космических аппаратов (КА), функционирующих на геостационарной орбите. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002486634
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.5b10

Способ электропитания космического аппарата

Заявляемое изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Техническим результатом является повышение удельных энергетических характеристик системы электропитания КА. Предлагается способ электропитания...
Тип: Изобретение
Номер охранного документа: 0002488933
Дата охранного документа: 27.07.2013
20.10.2013
№216.012.7741

Способ эксплуатации литий-ионной аккумуляторной батареи

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при наземной эксплуатации литий-ионных аккумуляторных батарей, например, в составе автономной системы электропитания искусственного спутника Земли (ИСЗ). Технический результат - повышение надежности и...
Тип: Изобретение
Номер охранного документа: 0002496189
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7742

Способ подготовки литий-ионной аккумуляторной батареи к штатной эксплуатации в составе искусственного спутника земли

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при подготовке литий-ионных аккумуляторных батарей к штатной эксплуатации в составе искусственных спутников Земли (ИСЗ). Техническим результатом является повышение функциональной надежности и...
Тип: Изобретение
Номер охранного документа: 0002496190
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7934

Способ изготовления космического аппарата

Изобретение относится к космической технике. Способ изготовления космического аппарата включает сборку космического аппарата, содержащего систему электропитания с солнечными батареями, аккумуляторными батареями и стабилизированным преобразователем напряжения, подготовку источников...
Тип: Изобретение
Номер охранного документа: 0002496690
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.922b

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Технический результат заключается в повышении удельных характеристик автономной системы электропитания ИСЗ. Для этого...
Тип: Изобретение
Номер охранного документа: 0002503112
Дата охранного документа: 27.12.2013
+ добавить свой РИД