×
10.07.2015
216.013.5ce0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ НИКЕЛЯ И РЕНИЯ С РАЗЛИЧНЫМ СООТНОШЕНИЕМ КОМПОНЕНТОВ ПРИ ПЕРЕРАБОТКЕ РЕНИЙСОДЕРЖАЩИХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к регенерации вторичного металлического сырья, в частности к переработке металлических отходов ренийсодержащих жаропрочных сплавов на основе никеля. В способе проводят электрохимическое растворение жаропрочного сплава при анодной поляризации импульсным током при постоянных параметрах (ток) в азотнокислом электролите с последующим выделением никеля и рения при контролируемом катодном потенциале. В качестве катода используют инертный электрод. В качестве анода используют растворяемый сплав. Растворение ренийсодержащего жаропрочного сплава на основе никеля ведут при фиксированном значении плотности тока, а последующее выделение никеля и рения проводят при контролируемом катодном потенциале. Техническим результатом является переработка отработанных ренийсодержащих жаропрочных сплавов на основе никеля с получением металлических порошков никеля и рения с различным соотношением компонентов. 5 пр.
Основные результаты: Способ получения металлических порошков никеля и рения с различным соотношением компонентов при переработке ренийсодержащих жаропрочных никелевых сплавов электрохимическим методом, включающий анодное растворение жаропрочного никелевого сплава в азотнокислом растворе электролита с использованием импульсного тока при фиксированном значении силы импульсного тока, а выделение из раствора электролита никеля и рения проводят при контролировании величины катодного потенциала, определяющей соотношение компонентов никеля и рения в полученном катодном осадке.

Изобретение относится к регенерации вторичного металлического сырья, в частности к переработке металлических отходов ренийсодержащих жаропрочных сплавов на основе никеля (суперсплавов), в частности электрохимическому способу получения металлических порошков никеля и рения с различным соотношением компонентов из отработанных жаропрочных сплавов на основе никеля при их переработке.

Одним из эффективных и перспективных направлений в технологии переработки металлических отходов редких тугоплавких металлов являются процессы, основанные на электрохимических методах, позволяющие с высокими показателями осуществлять регенерацию таких отходов, с получением качественной товарной продукции.

Известен способ растворения отходов суперсплавов в растворах минеральных кислот при наложении переменного тока [Пат №2313589 (РФ). Способ выделения ценных металлов из суперсплавов. Опубликовано: 27.12.2007], в качестве электродов применяют перерабатываемые отходы. Растворение ведут в солянокислом или сернокислом электролите.

Недостатком метода является относительно невысокая скорость растворения отходов. Метод не позволяет получать в одну стадию целевой продукт - никель.

Предложен способ электрохимического разложения ренийсодержащего суперсплава в водно-органическом электролите [Pat. US 5776329 A. Method of the decomposition and recovery of metallic constituents from superalloys. Опубликовано: 07.07.1998] с использованием протонных органических растворителей класса спиртов или β-дикетонов и электропроводящей добавкой в виде соли из группы галогенидов аммония; галогенидов, сульфатов или нитратов щелочных, щелочноземельных или переходных металлов при концентрации 0,1 моль/л на постоянном или переменном токе.

Основным недостатком является сложность при отделении шлама от образовавшихся при электролизе полимерных алкоксидов металлов, многостадийность дальнейшей переработки для получения товарных продуктов, утилизация промывных вод, содержащих органические растворители.

Наиболее близким техническим решением является способ анодного растворения отходов никельсодержащих сплавов в кислом электролите при наложении переменного электрического тока [Пат. №2401312 (РФ). Способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений. Опубликовано: 10.10.2010. Бюл. №28]. Растворение ведут в азотнокислом или сернокислом электролите при наложении однополупериодного ассиметричного переменного электрического тока промышленной частоты и при использовании в качестве второго электрода пластины из тантала или ниобия. При этом анодное растворение ведут при поддержании кислотности азотнокислого электролита на уровне 200-250 г/л HNO3, а сернокислого электролита на уровне 150-200 г/л H2SO4, при температуре 20-40°C и силе тока не менее 1 кА. Таким образом, при использовании однополупериодного переменного электрического тока существенно повышается скорость процесса растворения отходов.

Недостатками данного метода является использование высоконцентрированных растворов кислот, повышенная температура, высокие значения амплитуд переменного тока, ведущих к повышенным энергозатратам, невозможность электрохимического получения металлических порошков.

Техническим результатом предлагаемого изобретения является энергосберегающий воспроизводимый процесс получения металлических порошков никеля и рения с различным соотношением компонентов из отработанных ренийсодержащих жаропрочных сплавов на основе никеля при их переработке за счет управляемого электрохимического процесса, технологическая гибкость процесса и относительно низкие энергозатраты.

Технический результат достигается электрохимическим методом, заключающимся в анодном растворении ренийсодержащего жаропрочного никелевого сплава в азотнокислом электролите, растворение сплава ведут импульсным током при фиксированном значении тока (плотности тока), а выделение из раствора электролита никеля и рения проводят при контролируемом катодном потенциале, величина которого определяет соотношение компонентов (никеля и рения) в катодном осадке.

Сущность предложенного способа заключается в следующем. В качестве катода используют инертный электрод, в качестве анода - растворяемый сплав. Растворение ренийсодержащего жаропрочного сплава на основе никеля (суперсплава) импульсным током проводят в азонокислом электролите с концентрацией азотной кислоты 100 г/л при фиксированном значении тока (плотности тока), при этом в раствор электролита переходят никель, рений, кобальт, алюминий и хром. Последующее выделение из раствора электролита никеля и рения проводят при контролируемом катодном потенциале, величина которого определяет соотношение компонентов (никеля и рения) в катодном осадке. Потенциал катода определяют с помощью поляризационных и деполяризационных кривых, полученных с использованием электрохимического исследовательско-технологического комплекса (ЭХК-1012, ООО ИП "Тетран", использующего некомпенсационный способ измерения потенциала [Пат. №2106620 (РФ) Способ измерения потенциала рабочего электрода электрохимической ячейки под током / Гайдаренко О.В., Чернышов В.И., Чернышов Ю.И. Опубликовано: 10.03.1998. Бюл. №3].

Установлено, что в литературе не описано влияние потенциала электрода на электрохимическую переработку жаропрочных никелевых сплавов.

Пример 1. Анодное растворение жаропрочного сплава состава ЖС32-ВИ Ni - 60,05, Re - 4,0; Со - 9,3; W - 8,6; Y - 0,005; La - 0,005; Al - 6,0; Cr - 5,0; Ta - 4,0; Nb - 1,6; Mo - 1,1; C - 0,16; B - 0,15; Ce - 0,025 в растворе азотной кислоты с концентрацией 100 г/л проводили при контролируемой силе тока 2 А, в раствор электролита перешли никель, рений, кобальт, алюминий и хром. Соотношение в электролите концентраций никеля и рения при этом составило 1:1.

Выделение из раствора электролита никеля и рения проводили при контролируемом катодном потенциале, катодный потенциал Е=-0,76 В, точность поддержания потенциала ΔЕ=±0,01 В, температура - 20-25°C, выбранном с помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012. Выбранные параметры обеспечивают получение катодного продукта состава Ni - 88% (масс.), Re - 12% (масс.).

Пример 2. Анодное растворение жаропрочного сплава состава ЖС32-ВИ Ni - 60,05, Re - 4,0; Со - 9,3; W - 8,6; Y - 0,005; La - 0,005; Al - 6,0; Cr - 5,0; Ta - 4,0; Nb - 1,6; Mo - 1,1; C - 0,16; B - 0,15; Ce - 0,025 в растворе азотной кислоты с концентрацией 100 г/л проводили при контролируемой силе тока 2 А, в раствор электролита перешли никель, рений, кобальт, алюминий и хром. Соотношение в электролите концентраций никеля и рения при этом составило 1:1.

Выделение из раствора электролита никеля и рения проводили при контролируемом катодном потенциале, катодный потенциал Е=-0,84 В, точность поддержания потенциала ΔЕ=±0,01 В, температура - 20-25°C, выбранном с помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012. Выбранные параметры обеспечивают получение катодного продукта состава Ni - 91% (масс.), Re - 9% (масс.).

Пример 3. Анодное растворение жаропрочного сплава состава ЖС32-ВИ Ni - 60,05, Re - 4,0; Со - 9,3; W - 8,6; Y - 0,005; La - 0,005; Al - 6,0; Cr - 5,0; Ta - 4,0; Nb - 1,6; Mo - 1,1; C - 0,16; B - 0,15; Ce - 0,025 в растворе азотной кислоты с концентрацией 100 г/л проводили при контролируемой силе тока 2 А, в раствор электролита перешли никель, рений, кобальт, алюминий и хром. Соотношение в электролите концентраций никеля и рения при этом составило 1:1.

Выделение из раствора электролита никеля и рения проводили при контролируемом катодном потенциале, катодный потенциал Е=-1,38 В, точность поддержания потенциала ΔЕ =±0,01 В, температура - 20-25°C, выбранном с помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012. Выбранные параметры обеспечивают получение катодного продукта состава Ni - 95% (масс.), Re - 5% (масс.).

Пример 4. Анодное растворение жаропрочного сплава состава ЖС32-ВИ Ni - 60,05, Re - 4,0; Со - 9,3; W - 8,6; Y - 0,005; La - 0,005; Al - 6,0; Cr - 5,0; Ta - 4,0; Nb - 1,6; Mo - 1,1; C - 0,16; B - 0,15; Ce - 0,025 в растворе азотной кислоты с концентрацией 100 г/л и концентрацией хлорид-иона 20 г/л проводили при контролируемой силе тока 2 А, в раствор электролита перешли никель, рений, кобальт, алюминий и хром. Соотношение в электролите концентраций никеля и рения при этом составило 15:1.

Выделение из раствора электролита никеля и рения проводили при контролируемом катодном потенциале, катодный потенциал Е=-0,21 В, точность поддержания потенциала ΔЕ=±0,01 В, температура - 20-25°C, выбранном с помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012. Выбранные параметры обеспечивают получение катодного продукта состава Ni - 24% (масс.), Re - 76% (масс.).

Пример 5. Анодное растворение жаропрочного сплава состава ЖС32-ВИ Ni - 60,05, Re - 4,0; Со - 9,3; W - 8,6; Y - 0,005; La - 0,005; Al - 6,0; Cr - 5,0; Ta - 4,0; Nb - 1,6; Mo - 1,1; C - 0,16; B - 0,15; Ce - 0,025 в растворе азотной кислоты с концентрацией 100 г/л и концентрацией хлорид-иона 20 г/л проводили при контролируемой силе тока 2 А, в раствор электролита перешли никель, рений, кобальт, алюминий и хром. Соотношение в электролите концентраций никеля и рения при этом составило 15:1.

Выделение из раствора электролита никеля и рения проводили при контролируемом катодном потенциале, катодный потенциал Е=-0,56 В, точность поддержания потенциала ΔЕ=±0,1 В, температура - 20-25°C, выбранном с помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012. Выбранные параметры обеспечивают получение катодного продукта состава Ni - 4% (масс.), Re - 96% (масс.).

Таким образом, из описания примеров и результатов следует, что предлагаемая методика позволяет реализовывать управляемый электрохимический способ получения металлических порошков никеля и рения с различным соотношением компонентов из отработанных ренийсодержащих жаропрочных сплавов на основе никеля при их переработке.

Способ получения металлических порошков никеля и рения с различным соотношением компонентов при переработке ренийсодержащих жаропрочных никелевых сплавов электрохимическим методом, включающий анодное растворение жаропрочного никелевого сплава в азотнокислом растворе электролита с использованием импульсного тока при фиксированном значении силы импульсного тока, а выделение из раствора электролита никеля и рения проводят при контролировании величины катодного потенциала, определяющей соотношение компонентов никеля и рения в полученном катодном осадке.
Источник поступления информации: Роспатент

Showing 11-13 of 13 items.
19.04.2019
№219.017.33a0

Саморазрушающаяся полимерная композиция на основе полиолефина

Изобретение относится к саморазрушающейся полимерной композиции, которая предназначена для получения деструктирующих под воздействием факторов окружающей среды материалов и изделий. Композиция содержит 68-82 мас.% полиолефина, 8-32 мас.% полигидроксибутирата и 5-10 мас.% (со)полимера кетонового...
Тип: Изобретение
Номер охранного документа: 0002444544
Дата охранного документа: 10.03.2012
10.07.2019
№219.017.b0ce

Способ получения 5-замещенных 1-н-1,2,4-триазол-3-карбоновых кислот и их производных

Описывается способ получения новых 5-замещенных 1-Н-1,2,4-триазол-3-карбоновых кислот и их производных общей формулы , где R=CH; ; CH; p-CHCH, a Z=OH или OBzl, путем взаимодействия гидразида 1-бензилоксикарбонилформимидной кислоты с ацилирующим агентом общей формулы , X=Cl; ; , R имеет...
Тип: Изобретение
Номер охранного документа: 0002446163
Дата охранного документа: 27.03.2012
31.07.2020
№220.018.3971

Способ изготовления фильтрующего элемента и фильтрующий элемент

Изобретение относится к дренажно-распределительным устройствам фильтров с зернистой или насыпной загрузкой, используемых для очистки жидкостей, в том числе в системах водоподготовки. Способ изготовления фильтрующего элемента включает выполнение в металлическом трубчатом корпусе расширяющихся...
Тип: Изобретение
Номер охранного документа: 0002728273
Дата охранного документа: 28.07.2020
Showing 11-13 of 13 items.
11.03.2019
№219.016.dcd7

Способ получения порошка магнотанталата свинца со структурой типа перовскита

Изобретение относится к области получения оксидного порошка состава Pb(MgTaO) со структурой типа перовскита и может быть использовано в изготовлении материалов для пьезотехники. Способ включает смешение соединения тантала с водными растворами солей свинца и магния в стехиометрическом отношении,...
Тип: Изобретение
Номер охранного документа: 0002433955
Дата охранного документа: 20.11.2011
29.06.2019
№219.017.9e23

Способ хлорирования полиметаллического ниобий-танталсодержащего сырья и устройство для его осуществления

Группа изобретений относится к металлургии редких металлов, в частности к способу хлорного разложения полиметаллического ниобий-танталсодержащего сырья с получением хлоридов ниобия и/или тантала и устройствам (хлораторам) для осуществления процесса хлорирования. Способ включает хлорирование...
Тип: Изобретение
Номер охранного документа: 0002331680
Дата охранного документа: 20.08.2008
31.07.2020
№220.018.3971

Способ изготовления фильтрующего элемента и фильтрующий элемент

Изобретение относится к дренажно-распределительным устройствам фильтров с зернистой или насыпной загрузкой, используемых для очистки жидкостей, в том числе в системах водоподготовки. Способ изготовления фильтрующего элемента включает выполнение в металлическом трубчатом корпусе расширяющихся...
Тип: Изобретение
Номер охранного документа: 0002728273
Дата охранного документа: 28.07.2020
+ добавить свой РИД