×
27.05.2015
216.013.4f02

Результат интеллектуальной деятельности: УСТОЙЧИВЫЙ К ОКИСЛЕНИЮ НИКЕЛЕВЫЙ СПЛАВ

Вид РИД

Изобретение

№ охранного документа
0002551744
Дата охранного документа
27.05.2015
Аннотация: Изобретение относится к области металлургии, в частности к стойким к окислению сплавам на основе никеля. Стойкий к окислению сплав никеля содержит, мас.%: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-0,2 Mg, 0,1-0,2 Hf, Ni и неизбежные примеси - остальное. Сплав может быть использован в качестве материала оболочки термопар N-типа, так как имеет улучшенные свойства ползучести при высоких температурах. 7 з.п. ф-лы, 3 ил., 1 табл.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к оболочке термопар N-типа, подвергнутой воздействию окислительной атмосферы при очень высоких температурах, приблизительно 1100°C.

Такие жесткие эксплуатационные требования предъявляются, например, при измерении температуры в современных газовых турбинах. В частности, настоящее изобретение относится к сплаву никеля, стойкому к окислению с улучшенными свойствами ползучести.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

Тип GT24/GT26 газовых турбин заявителя, которые известны из предшествующего уровня техники, работают на основе последовательного принципа сгорания. Это означает, что сжатый воздух нагревается в первой камере сгорания с помощью добавления около 50% от общего объема топлива (при базовой нагрузке). После этого продукты горения расширяются, проходя через первую турбину (одноступенчатая турбина высокого давления), где давление снижается примерно в два раза. Затем оставшееся топливо добавляется во вторую камеру сгорания, где продукты горения нагреваются второй раз до максимальной температуры на входе в турбину, и, наконец, расширяются в турбине низкого давления. Вторая камера сгорания предназначена для самовоспламенения, то есть температура выхлопных газов из первой турбины должна позволить возникнуть самовозгоранию в сочетании с топливом, инжектированным в упомянутую камеру. По этой причине необходимо вести мониторинг и измерять температуру потока горячего газа. Для этих целей заявитель использует термопары, снабженные оболочкой.

Известными сплавами для оболочки термопар являются, например, IN600, IN617 и так называемый HAYNES®-214®. Это - Y'-усиленный сплав Ni с 4,5% Al, с хорошей прочностью при растяжении и стойкостью к механическому разрушению, который показывает, к сожалению, неудовлетворительную работу в отношении стойкости к окислению и рассогласование по коэффициенту теплового расширения со сплавами термоэлектродов.

Другими коммерческими сплавами оболочки являются, например, Nicrobell® и Pyrosil®D, все они являются сплавами на основе Ni с различными дополнительными элементами в разных количествах, например, Si, Y, Mo. Они не показывают удовлетворительную стойкость к окислению в течение долгосрочных высокотемпературных применений.

Кроме того, хорошо известно использование Ni сплавов торговых марок Nisil (никель-кремний) и Nicrosil (никель-хром - кремний) в качестве электродов для термопары N-типа. Эти сплавы обладают улучшенной характеристикой окисления и показывают повышенную термоэлектрическую стабильность при температурных измерениях до 1200°C по сравнению с другими стандартными сплавами термопары на основе обычного металла, потому что их химический состав снижает термоэлектрическую неустойчивость. Это достигается путем повышения концентраций хрома и кремния в основном никеле, чтобы вызвать переход от внутреннего к внешнему режиму окисления, и путем выбора дополнительных элементов, например Mg, который окисляется с образованием диффузионного барьера и, следовательно, пленок, ингибирующих окисление. При этом использовании Nisil служит как отрицательный проводник термопары, а Nicrosil как положительный проводник термопары N-типа.

К сожалению, эти материалы показывают присущую им низкую сопротивляемость ползучести и обладают относительно низкой прочностью при растяжении и свойствами механического разрушения, которые требуют внимания при производстве и выборе совместимого материала оболочки.

Известный преждевременный отказ в работе электродов термопары N-типа особенно Nisil проводника был приписан несоответствию коэффициентов термического расширения между сплавами оболочки, такими как HAYNES®-214®, IN600 или ss316, и сплавами Nisil и Nicrosil электродов термопары. Токопроводящие электроды термопары могут выйти из строя механически из-за знакопеременных деформаций, возникающих при термоциклировании. Деформации вызваны, прежде всего, продольными натяжениями, которые возникают из-за различных температурных коэффициентов линейного расширения термоэлементов и разнородных сплавов оболочки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является устранение недостатков предшествующего уровня техники, которые были упомянуты.

В основу настоящего изобретения положена задача нахождения материала, подходящего для использования в качестве материала оболочки для электродов термопары N-типа, которые могут использоваться без каких-либо проблем в окислительной атмосфере газовых турбин при экстремально высоких температурах. При этих температурах материал оболочки должен обладать достаточной стойкостью к окислению и относительно хорошей стойкостью к механическому разрушению (хорошая долгосрочная надежность) и хорошей термоэлектрической стабильностью.

Согласно настоящему изобретению эта задача достигается с помощью никелевого сплава следующего химического состава, мас. %: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-2 Mg, 0,1-0,2 Hf, остальное Ni и неизбежные примеси.

Предпочтительным вариантом осуществления настоящего изобретения представляется сплав следующего химического состава, мас. %: 6 Cr, 4,4 Si, 0,1 Y, 0,15 Mg, 0,1 Hf, остальное Ni и неизбежные примеси.

Сплав согласно настоящему изобретению показывает улучшенную стойкость к окислению при высоких температурах по сравнению с известными коммерческими материалами оболочки, такими как HAYNES®-214®, Nicrobell® или Pyrosil®D для электродов термопары N-типа, поэтому он может использоваться с преимуществом, как материал оболочки для термопар N-типа при очень высоких температурах в атмосфере окисления.

Здесь не существует значительного несоответствия в коэффициентах теплового расширения между представленным сплавом и электродами термопар N.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Примерные варианты осуществления настоящего изобретения иллюстрируются на чертежах, в которых:

на фиг.1 показаны результаты испытаний на растяжение при комнатной температуре для сплава согласно настоящему изобретению и для разных коммерческих сплавов;

на фиг.2 показаны результаты испытаний ползучести при температуре 800°C/50 MПa для сплава согласно настоящему изобретению и для разных коммерческих сплавов; и

на фиг.3 показаны характеристики окисления при температуре 1100°C для сплава согласно настоящему изобретению и для разных коммерческих сплавов.

ПОДРОБНОЕ ОПИСАНИЕ РАЗЛИЧНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Настоящее изобретение более подробно поясняется ниже на основании примерного варианта осуществления и графиков.

В таблице 1 приведен список соответствующих химических составов испытуемых сплавов. Легирующие компоненты приводятся в мас. %.

Сплав Nisil-M1 является сплавом согласно настоящему изобретению, в то время как другие 5 сплавов являются коммерчески доступными технологическими материалами. Это своего рода разновидность микролегированного Nisil с добавлением 0,1 Y, 0,1 Hf и значительным содержанием хрома (Cr6%). Большое преимущество Nisil-M1 состоит в том, что нет никакого изменения в поведении теплового расширения по сравнению с Nisil.

Образцы размером с кнопку для испытаний различных материалов с номинальным составом в соответствии с таблицей 1 (без HAYNES®-214®) были приготовлены плавлением в дуговой печи. Химический состав Nisil-M1 был разработан так, чтобы одновременно обладать улучшенной стойкостью к окислению и коэффициентом теплового расширения, близким к коэффициенту теплового расширения электродов термопары, сделанных из Nisil или Nicrosil. Приготовленные образцы размером с пуговицу были в значительной степени холоднокатаными при комнатной температуре со степенью деформации приблизительно 70%.

Холоднокатаные образцы были термически обработаны при температуре 800°C в течение 1 часа для того, чтобы достигнуть полностью рекристаллизованной структуры. Образцы для испытания мини-размеров были изготовлены путем машинной обработки заготовок, прошедших термическую обработку.

На фиг.1 показаны результаты испытаний на растяжение при комнатной температуре для этих сплавов, а также соответствующие свойства HAYNES®-214®, как описано в литературе (смотри HAYNES®214® ALLOY, HD-3008D, Haynes International, Inc. 2008).

Как ожидалось, HAYNES®-214® показал высокий предел прочности при растяжении по сравнению с другими сплавами, но сплав согласно настоящему изобретению Nisil-M1 показал улучшенную прочность при растяжении по сравнению с Nisil и Nicrosil. Это результат различного химического состава, а именно Cr и Hf. Оба элемента повышают предел ползучести и стойкость к окислению.

Результаты механического разрушения при температуре 800°C/50 MПa представлены на фиг.2. Сплав в соответствии с настоящим изобретением Nisil-M1 имеет высокое относительное удлинение (почти 45%) и намного лучший характер изменения механического разрушения, чем у Nisil, но ниже по сравнению с Nicrosil и оболочкой коммерческих сплавов Nicrobell® или Pyrosil®D.

Плоские образцы для испытаний упомянутых сплавов, включая HAYNES®-214®, были испытаны окислением на воздухе при температуре 1000°C в течение более чем 1500 часов. На фиг.3 представлены результаты окисления как привес массы на cм2 этих сплавов.

Как можно видеть на этой фигуре, Nisil-m1 показывает улучшенную стойкость к окислению по сравнению с Nicrosil и оболочной коммерческих сплавов Nicrobell® или Pyrosil®D, но лишь незначительно хуже, чем Nisil и HAYNES®- 214®.

Термопары N-типа сплавов (Nisil и Nicrosil) обладают относительно низким пределом прочности при растяжении и механическом разрушении. Эти характеристики требуют внимания при производстве и выборе совместимого материала оболочки. Это поможет избежать механического нарушения электродов термопары из-за несоответствия коэффициентов теплового расширения между электродами термопары и материалом оболочки. Хотя коммерческие материалы оболочки Nicrobell® или Pyrosil®D обладают близкими коэффициентами теплового расширения, что и у материалов электродов термопар (Nisil, Niscrosil), они не удовлетворяют требованиям относительно стойкости к окислению в течение длительного времени при высоких температурах применения. Это может быть достигнуто с помощью сплава согласно настоящему изобретению.


УСТОЙЧИВЫЙ К ОКИСЛЕНИЮ НИКЕЛЕВЫЙ СПЛАВ
УСТОЙЧИВЫЙ К ОКИСЛЕНИЮ НИКЕЛЕВЫЙ СПЛАВ
УСТОЙЧИВЫЙ К ОКИСЛЕНИЮ НИКЕЛЕВЫЙ СПЛАВ
Источник поступления информации: Роспатент

Showing 131-140 of 219 items.
20.08.2015
№216.013.6f65

Горелочное устройство

Настоящее изобретение относится к горелочному устройству для вырабатывания горячих газов (8), расширяемых в газовой турбине, содержащему горелку внутри камеры (1), причем указанная горелка содержит средство (5) впрыска топлива, средство (6) подачи воздуха и средство образования воспламеняющейся...
Тип: Изобретение
Номер охранного документа: 0002560087
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.726e

Способ мониторинга машин с вращающимися валами

Изобретение относится к способу обнаружения точек истирания и/или контакта на машинах с вращающимися частями. Вращающиеся части образуют электрическую коаксиальную систему относительно неподвижных частей такой машины, а в этой системе импульсы электрического напряжения распространяются с...
Тип: Изобретение
Номер охранного документа: 0002560864
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7285

Система и способ изготовления роторов

Изобретение относится к области производства роторов. Установка содержит множество обрабатывающих секций 2000 и множество перемещающих устройств 3000. Обрабатывающие секции 2000 включают в себя сварочную обрабатывающую секцию 100 для выполнения сварки и сопутствующих процессов, таких как...
Тип: Изобретение
Номер охранного документа: 0002560887
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7456

Способ работы устройства горения

Изобретение относится к энергетике. Способ работы устройства горения включает в себя подачу топлива и окислителя в устройство горения и их сжигание. Согласно способу во время, по меньшей мере, части периода работы в неустановившемся режиме дополнительная текучая среда подается вместе с...
Тип: Изобретение
Номер охранного документа: 0002561357
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7458

Способ эксплуатации камеры сгорания при работе в неустановившемся режиме

Изобретение относится к способу эксплуатации камеры сгорания при работе в неустановившемся режиме. В камеру сгорания подают, по меньшей мере, топливо. Неустановившийся режим включает в себя период, имеющий продолжительность, в течение которого топливо подают в количестве меньшем, чем...
Тип: Изобретение
Номер охранного документа: 0002561359
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7522

Теплообменный узел для поворотного регенеративного подогревателя

Изобретение относится к теплообменному узлу для поворотного регенеративного подогревателя. Теплообменный узел содержит множество теплообменных элементов, расположенных в стопку на расстоянии друг от друга. Каждая выемка из множества выемок одного из теплообменных элементов опирается на...
Тип: Изобретение
Номер охранного документа: 0002561561
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75e2

Горелка многоконусного типа предварительного смешивания для газовой турбины

Горелка предварительного смешивания многоконусного типа для газовой турбины содержит множество кожухов, расположенных вокруг центральной оси горелки и являющихся частями виртуального аксиально продолжающегося общего конуса , открытого в направлении вниз по потоку. Указанные части смещены...
Тип: Изобретение
Номер охранного документа: 0002561767
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.760d

Кольцо псевдоожижающего сопла для сварки

Изобретение относится к способу быстрой замены псевдоожижающих сопел. Способ быстрой замены псевдоожижающих сопел, имеющих колпачок сопла, прикрепленный к кольцу надетой на и продолжающейся радиально от вертикальной секции подводящей трубы, содержащий следующие этапы. Скользят инструментом...
Тип: Изобретение
Номер охранного документа: 0002561810
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.760e

Газотурбинная система генерирования энергии, содержащая систему аварийной подачи энергии

Настоящее изобретение относится к газотурбинной системе генерирования энергии, содержащей генератор с водородным охлаждением, имеющий водород в качестве теплоносителя, хранилище водорода энергоблока, вспомогательное оборудование генератора и систему аварийной подачи энергии, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002561811
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.762a

Цикл преобразования энергии для пара, генерируемого реактором на быстрых нейтронах с натриевым охлаждением

Изобретение относится к циклу преобразования энергии для пара, генерируемого реактором на быстрых нейтронах с натриевым охлаждением. Цикл имеет первую стадию, на которой первое расширение пара, выходящего из парогенератора, связанного с реактором, осуществляется для приведения пара из исходного...
Тип: Изобретение
Номер охранного документа: 0002561839
Дата охранного документа: 10.09.2015
Showing 131-140 of 207 items.
20.08.2015
№216.013.6f09

Система снижения утечки при эксплуатации энергетической установки

Система 1000 снижения утечки включает в себя теплообменник 100, канальное устройство 200 и разделительное устройство 300. Теплообменник 100 включает в себя роторный узел 102, установленный на роторной колонне 104 с возможностью вращения. Теплообменник 100 дополнительно включает в себя вторую...
Тип: Изобретение
Номер охранного документа: 0002559995
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f65

Горелочное устройство

Настоящее изобретение относится к горелочному устройству для вырабатывания горячих газов (8), расширяемых в газовой турбине, содержащему горелку внутри камеры (1), причем указанная горелка содержит средство (5) впрыска топлива, средство (6) подачи воздуха и средство образования воспламеняющейся...
Тип: Изобретение
Номер охранного документа: 0002560087
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.726e

Способ мониторинга машин с вращающимися валами

Изобретение относится к способу обнаружения точек истирания и/или контакта на машинах с вращающимися частями. Вращающиеся части образуют электрическую коаксиальную систему относительно неподвижных частей такой машины, а в этой системе импульсы электрического напряжения распространяются с...
Тип: Изобретение
Номер охранного документа: 0002560864
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7285

Система и способ изготовления роторов

Изобретение относится к области производства роторов. Установка содержит множество обрабатывающих секций 2000 и множество перемещающих устройств 3000. Обрабатывающие секции 2000 включают в себя сварочную обрабатывающую секцию 100 для выполнения сварки и сопутствующих процессов, таких как...
Тип: Изобретение
Номер охранного документа: 0002560887
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7456

Способ работы устройства горения

Изобретение относится к энергетике. Способ работы устройства горения включает в себя подачу топлива и окислителя в устройство горения и их сжигание. Согласно способу во время, по меньшей мере, части периода работы в неустановившемся режиме дополнительная текучая среда подается вместе с...
Тип: Изобретение
Номер охранного документа: 0002561357
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7458

Способ эксплуатации камеры сгорания при работе в неустановившемся режиме

Изобретение относится к способу эксплуатации камеры сгорания при работе в неустановившемся режиме. В камеру сгорания подают, по меньшей мере, топливо. Неустановившийся режим включает в себя период, имеющий продолжительность, в течение которого топливо подают в количестве меньшем, чем...
Тип: Изобретение
Номер охранного документа: 0002561359
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7522

Теплообменный узел для поворотного регенеративного подогревателя

Изобретение относится к теплообменному узлу для поворотного регенеративного подогревателя. Теплообменный узел содержит множество теплообменных элементов, расположенных в стопку на расстоянии друг от друга. Каждая выемка из множества выемок одного из теплообменных элементов опирается на...
Тип: Изобретение
Номер охранного документа: 0002561561
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75e2

Горелка многоконусного типа предварительного смешивания для газовой турбины

Горелка предварительного смешивания многоконусного типа для газовой турбины содержит множество кожухов, расположенных вокруг центральной оси горелки и являющихся частями виртуального аксиально продолжающегося общего конуса , открытого в направлении вниз по потоку. Указанные части смещены...
Тип: Изобретение
Номер охранного документа: 0002561767
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.760d

Кольцо псевдоожижающего сопла для сварки

Изобретение относится к способу быстрой замены псевдоожижающих сопел. Способ быстрой замены псевдоожижающих сопел, имеющих колпачок сопла, прикрепленный к кольцу надетой на и продолжающейся радиально от вертикальной секции подводящей трубы, содержащий следующие этапы. Скользят инструментом...
Тип: Изобретение
Номер охранного документа: 0002561810
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.760e

Газотурбинная система генерирования энергии, содержащая систему аварийной подачи энергии

Настоящее изобретение относится к газотурбинной системе генерирования энергии, содержащей генератор с водородным охлаждением, имеющий водород в качестве теплоносителя, хранилище водорода энергоблока, вспомогательное оборудование генератора и систему аварийной подачи энергии, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002561811
Дата охранного документа: 10.09.2015
+ добавить свой РИД