×
10.05.2015
216.013.4ae9

Результат интеллектуальной деятельности: СПОСОБ УЛЬТРАЗВУКОВОГО ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ЖИДКОЙ СРЕДЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии. Для повышения поверхностной твердости деталей без нарушения качества поверхности деталь подвергают ультразвуковому воздействию в емкости с жидкой средой с помещенным в ней источником акустического излучения с частотой акустических колебаний f 20-30 кГц в течение τ=30-45 минут с амплитудой колебательных смещений ξ=7-40 мкм. При обработке деталей из стали 40X амплитуду колебательных смещений выбирают в пределах ξ=15-40 мкм. 1 з.п. ф-лы, 2 табл., 22 пр.

Изобретение относится к области ультразвуковой обработки и может быть использовано для поверхностного упрочнения конструкционных сталей при ультразвуковой обработке в жидких средах.

Известен способ упрочнения конструкционных сталей путем ультразвукового поверхностного пластического деформирования, который проводят с определенной силой прижима Fn и амплитудой колебательных смещений ξ (см. Абрамов В.О., Абрамов О.В., Артемьев В.В. и др. Мощный ультразвук в металлургии и машиностроении. - М.: Янус-К, 2006. - с.438).

Недостатком известного способа является то, что при этом на поверхностном слое обрабатываемого изделия в результате многократного деформирования сохраняются неровности (поверхностная шероховатость), что требует дополнительной обработки поверхности изделия.

Наиболее близким к заявляемому способу по технической сущности является принятый в качестве прототипа способ ультразвуковой очистки изделий, в котором предусмотрено воздействие на изделие, помещенное в рабочую емкость с жидкостью, ультразвуковыми колебаниями от основного высокоамплитудного источника излучения с амплитудой колебательных смещений ξ=15-50 мкм и частотой fрц=20-30 кГц (см. патент РФ №2378058, МКИ B08B 3/12, опубл. 10.01.2010).

Недостатком известного способа является то, что при ультразвуковой очистке в жидкостях возникают эрозионные процессы, необходимые для удаления загрязнений, но которые могут приводить к разрушению поверхности изделия.

Технической задачей, решаемой настоящим изобретением, является повышение поверхностной твердости деталей из конструкционных сталей без нарушения качества поверхности.

Поставленная техническая задача решается тем, что в способе ультразвукового поверхностного упрочнения деталей из конструкционных сталей в жидкой среде, включающем погружение в жидкую среду детали и источника акустического излучения и последующее ультразвуковое воздействие на деталь с частотой акустических колебаний fрц 20-30 кГц, согласно изобретению обработку проводят с амплитудой колебательных смещений в пределах ξ=7-40 мкм при длительности процесса τ=30-45 мин, при этом расстояние между деталью и источником акустического излучения выдерживает в пределах l=3-6 мм.

На решение поставленной технической задачи направлено и то, что для деталей из армко-железа амплитуду колебательных смещений выбирают в пределах ξ=7-15 мкм.

На решение поставленной технической задачи направлено также и то, что для деталей из стали 40x амплитуду колебательных смещений выбирают в пределах ξ=15-40 мкм.

Решение поставленной задачи достигается благодаря возникновению процесса кавитации вблизи поверхности изделия за счет использования источника ультразвуковых колебаний. При этом возникают зоны кавитационных пузырьков, характеризующихся пульсирующим характером колебаний давления. При выдержки амплитуды акустических колебаний в пределах ξ=7-40 мкм и времени обработки в течение τ=30-45 мин. поверхность изделий значительно упрочняется без ухудшения качества поверхности, т.е. без эрозии.

Способ поверхностного упрочнения деталей из конструкционных сталей в жидкой среде включает погружение в жидкую рабочую среду детали и источника акустического излучения, который располагают на расстоянии l=3-6 мм от обрабатываемой поверхности. Затем оказывают последующее ультразвуковое воздействие на деталь с частотой акустических колебаний fрц=20-30 кГц. Согласно способу обработку проводят с амплитудой колебательных смещений в пределах ξ=7-40 мкм и длительностью процесса τ=30-45 мин. Причем для деталей из армко-железа амплитуду колебательных смещений выбирают в пределах ξ=7-15 мкм, для деталей из стали 40x амплитуду колебательных смещений выбирают в пределах ξ=15-40 мкм.

Предлагаемый способ осуществляется следующим образом. Предварительно деталь помещают в рабочую емкость с жидкой средой при комнатной температуре. Затем в жидкой среде к поверхности детали подводят источник акустического излучения - пьезоэлектрический преобразователь, на расстояние l=3-6 мм с амплитудой колебательных смещений ξ=7-40 мкм, время воздействия составляет τ=20-60 мин.

Предполагаемый способ опробован на образцах из армко-железа, поверхность которых была предварительно отшлифована. Осуществимость и преимущество демонстрируются на представленных ниже примерах 1-22.

Примеры

1. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=7 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2600 мПа, толщина обработанного слоя n=18 мкм, при этом эрозия на поверхности не образуется.

2. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=7 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2700 мПа, толщина обработанного слоя n=20 мкм, при этом эрозия на поверхности не образуется.

3. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=7 мкм в течение τ=45 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2900 мПа, толщина обработанного слоя n=30 мкм, при этом эрозия на поверхности не образуется.

4. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=7 мкм в течение τ=60 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=40 мкм, при этом на поверхности образуются эрозионные кратеры.

5. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2700 мПа, толщина обработанного слоя n=40 мкм, при этом эрозия на поверхности не образуется.

6. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2800 мПа, толщина обработанного слоя n=45 мкм, при этом эрозия на поверхности не образуется.

7. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=45 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=50 мкм, при этом эрозия на поверхности не образуется.

8. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=60 минут, пьезоэлектрический преобразователь находился на расстоянии 1=3-6 мм от образца. Значение микротвердости составило 3100 мПа, толщина обработанного слоя n=55 мкм, при этом эрозия на поверхности не образуется.

9. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии 1=3-6 мм от образца. Значение микротвердости составило 2800 мПа, толщина обработанного слоя n=50 мкм, при этом эрозия на поверхности не образуется.

10. Обработка образцов из армко-железа. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии 1=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=75 мкм, при этом на поверхности образуются эрозионные кратеры.

Результаты испытаний из армко-железа приведены в таблице 1.

Исследование деталей-образцов из стали 40X рассмотрены на примерах 11-22.

11. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2700 мПа, толщина обработанного слоя n=40 мкм, при этом эрозия на поверхности не образуется.

12. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=50 мкм, при этом эрозия на поверхности не образуется.

13. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=45 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3200 мПа, толщина обработанного слоя n=50 мкм, при этом эрозия на поверхности не образуется.

14. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=15 мкм в течение τ=60 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3300 мПа, толщина обработанного слоя n=70 мкм, при этом на поверхности образуются эрозионные кратеры.

15. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 2900 мПа, толщина обработанного слоя n=45 мкм, при этом эрозия на поверхности не образуется.

16. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=65 мкм, при этом эрозия на поверхности не образуется.

17. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=45 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3100 мПа, толщина обработанного слоя n=70 мкм, при этом эрозия на поверхности не образуется.

18. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=30 мкм в течение τ=60 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3200 мПа, толщина обработанного слоя n=70 мкм, при этом на поверхности образуются эрозионные кратеры.

19. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=40 мкм в течение τ=20 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3000 мПа, толщина обработанного слоя n=50 мкм, при этом эрозия на поверхности не образуется.

20. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=40 мкм в течение τ=30 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3100 мПа, толщина обработанного слоя n=70 мкм, при этом эрозия на поверхности не образуется.

21. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=40 мкм в течение τ=45 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3100 мПа, толщина обработанного слоя n=70 мкм, при этом эрозия на поверхности не образуется.

22. Обработка образцов из стали 40X. Образцы подвергали кавитационному воздействию в жидкой среде с амплитудой колебательных смещений ξ=40 мкм в течение τ=60 минут, пьезоэлектрический преобразователь находился на расстоянии l=3-6 мм от образца. Значение микротвердости составило 3200 мПа, толщина обработанного слоя n=70 мкм, при этом на поверхности образуются эрозионные кратеры.

Результаты испытаний образцов из стали 40X приведены в таблице 2.

Таким образом, из таблица видно, что вновь заявляемый способ по сравнению с прототипом позволяет повысить поверхностную твердость деталей из армко-железа и конструкционных сталей без изменения качества поверхности. При этом оптимальное значение амплитуды колебательных смещений составляет ξ=7-40 мкм при длительности ультразвуковой обработки τ=30-45 минут. Видно, что с увеличением содержания углерода в стали для достижения максимальной толщины упрочненного слоя требуется амплитуда колебательных смещений до ξ=40 мкм для стали 40X. Дальнейшее увеличение параметра приводит к эрозионному разрушению поверхностного слоя деталей.

В результате описанного выше акустического воздействия вблизи поверхности металла формируются масса многократно захлопывающихся пузырьков, которые активируют процесс повышения микронапряжений, увеличения плотности дислокаций и измельчения зерна. В результате развития ультразвуковой кавитации на поверхности деталей возникает поверхностная пластическая деформация. По характеру производимого действия и по длительности существования в акустическом поле кавитационные пузырьки разделяют на захлопывающиеся и пульсирующие. При захлопывании кавитационного пузырька возникает ударная волна, развивающая значительные давления. Многократное воздействие в одной и той же области большого количества отдельных захлопывающихся пузырьков приводит к повышению плотности дислокаций, которая носит накопительный характер. В начале воздействия пузырьков на поверхности преобладают упругие деформации, затем, накапливаясь по величине, деформации становятся пластическими, и при повышении критических значений деформации может произойти разрушение металла. Испытания показали, что после воздействия ультразвуковой кавитации, длительность которой лежит в пределах τ=30-45 минут, наблюдается повышение твердости, что вызвано измельчением зерна и повышением плотности дислокаций без образования эрозий.

Таким образом, изобретение позволяет повысить поверхностную твердость деталей из конструкционных сталей без нарушения качества поверхности.

Источник поступления информации: Роспатент

Showing 11-20 of 32 items.
20.02.2015
№216.013.27e9

Форсунка для подачи двух видов топлива в дизельный двигатель

Изобретение относится к системам впрыска топлива дизельных двигателей. Предложена форсунка, содержащая корпус (1), полый распылитель (4) с коническим седлом (5) и каналы (2) и (3) подвода основного и запального топлива. В полости распылителя (4) размещена подпружиненная игла (11), в нижней...
Тип: Изобретение
Номер охранного документа: 0002541674
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.30e3

Источник автономного электропитания

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности. Устройство содержит эластичный передаточный элемент (1), связанный с преобразователем энергии, подключенным к электрической...
Тип: Изобретение
Номер охранного документа: 0002543983
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.44fe

Способ контроля правильности эксплуатации транспортных средств, сельскохозяйственных и дорожных машин

Изобретение относится к информационной технике на транспорте. Технический результат заключается в повышении надежности работы транспортных средств за счет продления их ресурса. В способе измеряют параметры сигналов с контрольных точек в системе электрооборудования и штатных датчиков...
Тип: Изобретение
Номер охранного документа: 0002549160
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.55ef

Цепной вариатор с автоматически изменяемым шагом

Изобретение относится к машиностроению, в частности к области бесступенчатых передач, и может быть использовано в механических приводах с плавным регулированием скорости. Цепной вариатор с автоматически изменяемым шагом вместе с механизмом реверса находится в общем корпусе (7) с крышкой (2) и...
Тип: Изобретение
Номер охранного документа: 0002553529
Дата охранного документа: 20.06.2015
27.07.2015
№216.013.6763

Способ упрочнения поверхностного слоя стальных деталей

Изобретение относится к области технологии машиностроения, а именно к упрочнению поверхностного слоя стальных деталей. Осуществляют низкотемпературное азотирование детали, а затем проводят ее поверхностное пластическое деформирование. Поверхностное пластическое деформирование детали...
Тип: Изобретение
Номер охранного документа: 0002558020
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6824

Способ очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог

Изобретение относится к области охраны окружающей среды. Для очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог строят и используют фильтрующую систему на поверхности грунтовых откосов. В качестве фильтрующей системы используют верхний слой грунта откоса,...
Тип: Изобретение
Номер охранного документа: 0002558213
Дата охранного документа: 27.07.2015
27.08.2015
№216.013.73ad

Городская машина

Городская машина содержит корпус (1), приводы передних и задних колес (5), видеокамеры наружного наблюдения, радары для определения расстояний до объектов окружающей обстановки. Приемопередающие элементы радаров (6) размещены на каждом из колес совместно с датчиками их углового положения....
Тип: Изобретение
Номер охранного документа: 0002561188
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b95

Форсунка многотопливного дизеля

Изобретение относится к топливной аппаратуре. Форсунка содержит корпус и головку с каналами, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода, подпружиненную запирающую иглу, в распылителе выполнена распределительная полость, связанная с каналами подвода...
Тип: Изобретение
Номер охранного документа: 0002567340
Дата охранного документа: 10.11.2015
10.04.2016
№216.015.2f18

Устройство для испытания пространственных коробчатых конструкций

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций. Устройство содержит корпус с размещенным в нем приводом и жестко закрепленную на нем...
Тип: Изобретение
Номер охранного документа: 0002580337
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35a4

Центробежная установка для термообработки жиросодержащего сырья в электромагнитном поле сверхвысокой частоты

Изобретение относится к технологическому оборудованию предприятий мясной промышленности и предназначено для обеззараживания и вытопки жира из измельченного жиросодержащего сырья. Центробежная установка для термообработки жиросодержащего сырья в электромагнитном поле сверхвысокой частоты...
Тип: Изобретение
Номер охранного документа: 0002581224
Дата охранного документа: 20.04.2016
Showing 11-20 of 31 items.
20.02.2015
№216.013.27e9

Форсунка для подачи двух видов топлива в дизельный двигатель

Изобретение относится к системам впрыска топлива дизельных двигателей. Предложена форсунка, содержащая корпус (1), полый распылитель (4) с коническим седлом (5) и каналы (2) и (3) подвода основного и запального топлива. В полости распылителя (4) размещена подпружиненная игла (11), в нижней...
Тип: Изобретение
Номер охранного документа: 0002541674
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.30e3

Источник автономного электропитания

Изобретение относится к электротехнике, к возобновляемым источникам электрической энергии. Технический результат состоит в упрощении конструкции и повышении надежности. Устройство содержит эластичный передаточный элемент (1), связанный с преобразователем энергии, подключенным к электрической...
Тип: Изобретение
Номер охранного документа: 0002543983
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.44fe

Способ контроля правильности эксплуатации транспортных средств, сельскохозяйственных и дорожных машин

Изобретение относится к информационной технике на транспорте. Технический результат заключается в повышении надежности работы транспортных средств за счет продления их ресурса. В способе измеряют параметры сигналов с контрольных точек в системе электрооборудования и штатных датчиков...
Тип: Изобретение
Номер охранного документа: 0002549160
Дата охранного документа: 20.04.2015
20.06.2015
№216.013.55ef

Цепной вариатор с автоматически изменяемым шагом

Изобретение относится к машиностроению, в частности к области бесступенчатых передач, и может быть использовано в механических приводах с плавным регулированием скорости. Цепной вариатор с автоматически изменяемым шагом вместе с механизмом реверса находится в общем корпусе (7) с крышкой (2) и...
Тип: Изобретение
Номер охранного документа: 0002553529
Дата охранного документа: 20.06.2015
27.07.2015
№216.013.6763

Способ упрочнения поверхностного слоя стальных деталей

Изобретение относится к области технологии машиностроения, а именно к упрочнению поверхностного слоя стальных деталей. Осуществляют низкотемпературное азотирование детали, а затем проводят ее поверхностное пластическое деформирование. Поверхностное пластическое деформирование детали...
Тип: Изобретение
Номер охранного документа: 0002558020
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6824

Способ очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог

Изобретение относится к области охраны окружающей среды. Для очистки загрязненного поверхностного стока с дорожного полотна автомобильных дорог строят и используют фильтрующую систему на поверхности грунтовых откосов. В качестве фильтрующей системы используют верхний слой грунта откоса,...
Тип: Изобретение
Номер охранного документа: 0002558213
Дата охранного документа: 27.07.2015
27.08.2015
№216.013.73ad

Городская машина

Городская машина содержит корпус (1), приводы передних и задних колес (5), видеокамеры наружного наблюдения, радары для определения расстояний до объектов окружающей обстановки. Приемопередающие элементы радаров (6) размещены на каждом из колес совместно с датчиками их углового положения....
Тип: Изобретение
Номер охранного документа: 0002561188
Дата охранного документа: 27.08.2015
10.11.2015
№216.013.8b95

Форсунка многотопливного дизеля

Изобретение относится к топливной аппаратуре. Форсунка содержит корпус и головку с каналами, полый распылитель с запирающим конусом, распыливающими отверстиями, каналами подвода, подпружиненную запирающую иглу, в распылителе выполнена распределительная полость, связанная с каналами подвода...
Тип: Изобретение
Номер охранного документа: 0002567340
Дата охранного документа: 10.11.2015
10.04.2016
№216.015.2f18

Устройство для испытания пространственных коробчатых конструкций

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций. Устройство содержит корпус с размещенным в нем приводом и жестко закрепленную на нем...
Тип: Изобретение
Номер охранного документа: 0002580337
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35a4

Центробежная установка для термообработки жиросодержащего сырья в электромагнитном поле сверхвысокой частоты

Изобретение относится к технологическому оборудованию предприятий мясной промышленности и предназначено для обеззараживания и вытопки жира из измельченного жиросодержащего сырья. Центробежная установка для термообработки жиросодержащего сырья в электромагнитном поле сверхвысокой частоты...
Тип: Изобретение
Номер охранного документа: 0002581224
Дата охранного документа: 20.04.2016
+ добавить свой РИД