×
10.05.2015
216.013.4a0a

Результат интеллектуальной деятельности: СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Авторы

№ охранного документа
0002550461
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное. Покрытие не содержит тантала, рения, кремния. Покрытие характеризуется высокими показателями стойкости к высокотемпературной коррозии и окислению. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к сплаву защитного слоя (покрытия) для защиты конструктивного элемента газовой турбины от коррозии и/или окисления, в частности, при высоких температурах, и конструктивному элементу газовой турбины по независимым пунктам формулы изобретения.

Защитные слои для металлических конструктивных элементов, которые должны повышать их коррозионную стойкость и/или стойкость к окислению, известны в уровне техники в большом количестве. Большинство из этих защитных слоев известны под общим названием MCrAlY, где Μ обозначает по меньшей мере один из элементов из группы, включающей в себя железо, кобальт и никель, а другими существенными составными частями являются хром, алюминий и иттрий.

Характерные покрытия этого рода известны из патентов US 4005989 и 4034142.

Известно также добавление рения (Re) в сплавы NiCoCrAlY.

Усилия по повышению температур на входе как стационарных газовых турбин, так и авиационных двигателей имеют большое значение в отрасли газовых турбин, так как температуры на входе являются важными определяющими величинами для достигаемых газовыми турбинами термодинамических коэффициентов полезного действия. Благодаря применению специально разработанных сплавов в качестве основных материалов для конструктивных элементов, которые должны подвергаться высоким тепловым нагрузкам, таких как направляющие и рабочие лопатки, в частности, благодаря применению монокристаллических суперсплавов, возможны температуры на входе значительно выше 1000°C. Между тем, уровень техники допускает температуры на входе, равные 950°C и больше у стационарных газовых турбин, а также 1100°C и больше в газовых турбинах авиационных двигателей.

Примеры конструкции лопатки турбины с монокристаллической подложкой, которая, в свою очередь, может иметь сложную конструкцию, содержатся в WO 91/01433 A1.

В то время как физическая нагрузочная способность разработанных тем временем основных материалов для высоконагруженных конструктивных элементов с учетом возможного дальнейшего повышения температур на входе практически не представляет собой проблемы, для достижения достаточной стойкости к окислению и коррозии необходимо прибегать к защитным слоям. Наряду с достаточной химической стойкостью защитного слоя при агрессивных воздействиях, которые могут ожидаться от выхлопных газов при температурах порядка 1000°C, защитный слой должен также иметь достаточно хорошие механические свойства, не в последнюю очередь - с учетом механического взаимодействия между защитным слоем и основным материалом. В частности, защитный слой должен быть достаточно вязким, чтобы он мог следовать за возможными деформациями основного материала и не рваться, так как таким образом создавались бы точки агрессивного воздействия окисления и коррозии.

Соответственно этому, в основе изобретения лежит задача предложить сплав и защитный слой, который обладает хорошей стойкостью к высокотемпературной коррозии и окислению, обладает хорошей долговременной стабильностью и который, кроме того, особенно хорошо адаптирован к механической нагрузке, которая, в частности, может ожидаться в газовой турбине при высокой температуре.

Задача решается с помощью сплава защитного покрытия (слоя) по первому независимому пункту формулы изобретения.

Другая задача изобретения заключается в том, чтобы предложить конструктивный элемент газовой или паровой турбины, который обладает повышенной защитой от коррозии и окисления.

Эта задача тоже решается с помощью конструктивного элемента газовой или паровой турбины по второму независимому пункту формулы изобретения, который для защиты от коррозии и окисления при высоких температурах имеет защитное покрытие по первому независимому пункту формулы изобретения в виде одинарного слоя, на который нанесен керамический теплобарьерный слой.

В зависимых пунктах формулы изобретения перечислены другие предпочтительные признаки, которые предпочтительно могут произвольно сочетаться друг с другом.

В основе изобретения лежит, в частности, тот известный факт, что защитный слой в покрытии и в переходной области между защитным слоем и основным материалом содержит хрупкие выделения рения. Эти хрупкие фазы, усиленно образующиеся при применении со временем и температурой, приводят при эксплуатации к сильно выраженным продольным трещинам в слое, а также в переходе слой/основной материал с последующим отслоением слоя. При взаимодействии с углеродом, который может диффундировать из основного материала внутрь слоя или диффундирует через поверхность внутрь слоя во время термообработки в печи, хрупкость выделений рения дополнительно повышается. При окислении фаз рения динамика образования трещин еще больше усиливается.

Изобретение поясняется подробнее ниже.

Показано:

фиг. 1: система слоев (покрытие), содержащая защитный слой,

фиг. 2: составы суперсплавов,

фиг. 3: газовая турбина,

фиг. 4: лопатка турбины и

фиг. 5: камера сгорания.

Фигуры и описание представляют собой только примеры осуществления изобретения.

В соответствии с изобретением защитный слой 7 (фиг. 1) для защиты конструктивного элемента от коррозии и окисления при высокой температуре, по существу, содержит следующие элементы (данные приведены в вес. %):

24%-26% кобальта (Co),

10%-12% алюминия (Αl),

0,2%-0,5% иттрия (Y) и/или по меньшей мере одного эквивалентного металла из группы, включающей в себя скандий и редкоземельные элементы,

12%-14% хрома (Cr),

остальное - никель (Ni) (NiCoCrAlY).

Этот перечень не окончателен, но не содержит тантала (Та), так как это влияет на плазменное преобразование γ/γ′. В одном из предпочтительных вариантов осуществления сплав состоит из следующих элементов: никель, кобальт, хром, алюминий и иттрий.

При высокой окислительной нагрузке (чистый газ для сжигания) иттрием должно связываться больше кислорода, чтобы защищающий слой оксида алюминия не мог расти слишком быстро, причем тогда значение иттрия предпочтительно составляет примерно до 0,7 вес. %. Однако вообще содержание иттрия в сплаве не может становиться слишком высоким, так как иначе это приводит к охрупчиванию.

Одним из предпочтительных вариантов осуществления является следующий состав сплава:

Ni-25Co-13Cr-11Al-0,3Y.

Следует констатировать, что доли отдельных элементов особенно согласованы с учетом их воздействий, которые, в частности, можно видеть в связи с отсутствующим элементом рением. Если размеры долей выбраны так, то можно обойтись без добавления рения (Re), так что и выделения рения не образуются. Предпочтительно, во время применения защитного слоя не возникает хрупких фаз, так что долговременные характеристики улучшены, и их срок действия увеличен.

При взаимодействии с восстановлением хрупких фаз, которые оказывают негативное воздействие особенно при более высоких механических свойствах, путем сокращения механических напряжений за счет выбранного содержания никеля улучшаются механические свойства.

Защитный слой при хорошей коррозионной стойкости обладает особенно хорошей стойкостью к окислению и отличается также особенно хорошими свойствами вязкости, так что он является особенно пригодным для применения в газовой турбине 100 (фиг. 3) при дополнительном повышении температуры на входе.

Порошки наносятся, например, путем плазменного напыления (APS (атмосферное плазменное напыление), LPPS (плазменное напыление при низком давлении), VPS (вакуумно-плазменное напыление,…)). Другие способы также возможны (PVD (физическое парофазное осаждение), CVD (химическое парофазное осаждение), холодное газодинамическое напыление,…).

Описанный защитный слой 7 действует также как адгезионный слой по отношению к суперсплаву.

Предпочтительно, для конструктивного элемента применяется только один единственный защитный слой 7, то есть не дуплексный слой для подслоя. На этот защитный слой 7 могут наноситься другие слои, в частности керамические теплобарьерные слои 10.

У конструктивного элемента 1 защитный слой 7 предпочтительно нанесен на подложку 4 из суперсплава на основе никеля или кобальта.

В качестве подложки, в частности, возможен следующий состав (данные в вес. %):

0,1%-0,15% углерод,

18%-22% хром,

18%-19% кобальт,

0%-2% вольфрам,

0%-4% молибден,

0%-1,5% тантал,

0%-1% ниобий,

1%-3% алюминий,

2%-4% титан,

0%-0,75% гафний,

альтернативно, небольшие доли бора и/или циркония, остаток никель.

Составы этого рода известны как литейные сплавы под названиями GTD222, IN939, IN6203 и Udimet 500.

Другие альтернативы для подложки 4 конструктивного элемента 1, 120, 130, 155 перечислены на фиг. 2.

Значение толщины защитного слоя 7 на конструктивном элементе 1 предпочтительно выбирается примерно от 100 мкм до 300 мкм.

Защитный слой 7 особенно пригоден для защиты конструктивного элемента 1, 120, 130, 155 от коррозии и окисления, когда конструктивный элемент подвергается воздействию выхлопных газов при температуре материала примерно 950°C, у авиационных турбин даже примерно 1100°C.

Защитный слой 7, предлагаемый изобретением, при этом особенно пригоден для защиты конструктивного элемента газовой турбины 100, в частности направляющей лопатки 120, рабочей лопатки 130 или элемента 155 теплозащитного экрана, который подвергается воздействию горячего газа перед турбиной или внутри нее, газовой турбины 100 или паровой турбины.

Защитный слой 7 может применяться в качестве верхнего слоя (защитный слой является наружным слоем) или в качестве подслоя (защитный слой является промежуточным слоем).

Предпочтительно он применяется в качестве «одиночного» слоя, т.е. нет никакого другого металлического слоя.

На фиг. 1 показана в качестве конструктивного элемента система 1 слоев. Эта система 1 слоев состоит из подложки 4. Подложка 4 может быть металлической и/или керамической. В частности, у конструктивных элементов турбин, таких как, например, рабочие 120 (фиг. 4) или направляющие 130 (фиг. 3, 4) лопатки турбины, элементы 155 теплозащитного экрана (фиг. 5), а также другие части корпуса паровой или газовой турбины 100 (фиг. 3), подложка 4 состоит из суперсплава на основе никеля, кобальта или железа.

Предпочтительно применяются суперсплавы на основе никеля.

На подложке 4 имеется предлагаемый изобретением защитный слой 7. Он предпочтительно применяется в качестве «одиночного» слоя, т.е. нет никакого другого металлического слоя.

Предпочтительно этот защитный слой 7 наносится путем плазменного напыления (VPS, LPPS, APS1, …).

Этот слой может применяться в качестве наружного слоя (не изображено) или промежуточного слоя (фиг. 1).

В последнем случае на защитном слое 7 имеется керамический теплобарьерный слой 10.

Защитный слой 7 может наноситься на вновь изготовленные конструктивные элементы и восстановленные конструктивные элементы из обновленных.

Восстановление (ремонт) означает, что конструктивные элементы 1 после их применения при необходимости отделяются от слоев покрытия (теплобарьерный слой) и продукты коррозии и окисления удаляются, например, путем обработки кислотой (отпаривания кислотой). При необходимости требуется еще ремонт трещин. После этого на такой конструктивный элемент может снова наноситься покрытие, так как подложка 4 очень дорогая.

На фиг. 3 показана в качестве примера газовая турбина 100 в продольном частичном сечении.

Газовая турбина 100 имеет внутри опертый с возможностью вращения вокруг оси 102 вращения ротор 103, снабженный валом 101, который также называется рабочим колесом турбины.

Вдоль ротора 103 последовательно расположены всасывающий корпус 104, компрессор 105, имеющая, например, форму тора камера 110 сгорания, в частности кольцевая камера сгорания, снабженная несколькими расположенными коаксиально горелками 107, турбина 108 и корпус 109 газовыпускной системы.

Кольцевая камера 110 сгорания сообщается, например, с кольцеобразным каналом 111 горячих газов. Там, например, четыре последовательно включенные ступени 112 турбины образуют турбину 108.

Каждая ступень 112 турбины образована, например, из двух лопаточных венцов. Если смотреть в направлении течения рабочей среды 113, в канале 111 горячих газов, за рядом 115 направляющих лопаток следует ряд 125, образованный из рабочих лопаток 120.

Направляющие лопатки 130 при этом закреплены на внутреннем корпусе 138 статора 143, в отличие от чего рабочие лопатки 120 ряда 125 установлены, например, посредством диска 133 турбины на роторе 103.

С ротором 103 соединен генератор или рабочая машина (не изображена).

Во время эксплуатации газовой турбины 100 воздух 135 всасывается компрессором 105 через всасывающий корпус 104 и сжимается. Получаемый на обращенном к турбине конце компрессора 105 сжатый воздух направляется к горелкам 107 и там смешивается с топливом. Эта смесь затем сжигается в камере 110 сгорания с образованием рабочей среды 113. Оттуда рабочая среда 113 течет по каналу 111 горячих газов к направляющим лопаткам 130 и рабочим лопаткам 120. На рабочих лопатках 120 рабочая среда 113 расширяется с передачей импульса, так что рабочие лопатки 120 приводят в движение ротор 103, а ротор - соединенную с ним рабочую машину.

Находящиеся под воздействием горячей рабочей среды 113 конструктивные элементы во время эксплуатации газовой турбины 100 подвергаются воздействию тепловых нагрузок. Направляющие лопатки 130 и рабочие лопатки 120 первой, если смотреть в направлении течения рабочей среды 113, ступени 112 турбины, наряду с футеровочными элементами теплозащитного экрана кольцевой камеры 110 сгорания, подвергаются тепловым нагрузкам в наибольшей степени.

Чтобы выдерживать действующие там температуры, они могут охлаждаться с помощью охлаждающего средства.

Подложки конструктивных элементов могут также иметь направленную структуру, т.е. они являются монокристаллическими (SX-структура) или содержат только продольно направленные зерна (DS-структура).

В качестве материала для конструктивных элементов, в частности для лопаток 120, 130 турбины и конструктивных элементов камеры 110 сгорания, применяются, например, суперсплавы на основе железа, никеля или кобальта.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

У направляющей лопатки 130 имеется обращенный к внутреннему корпусу 138 турбины 108 хвостовик направляющей лопатки (здесь не изображен) и находящаяся напротив хвостовика направляющей лопатки головка направляющей лопатки. Головка направляющей лопатки обращена к ротору 103 и установлена на бандажном кольце 140 статора 143.

На фиг. 4 показан вид в перспективе рабочей лопатки 120 или направляющей лопатки 130 турбомашины, которая простирается вдоль продольной оси 121.

Турбомашина может представлять собой газовую турбину самолета или электростанции для выработки электроэнергии, паровую турбину или компрессор.

У лопатки 120, 130 по продольной оси 121 имеется, последовательно, область 400 крепления, примыкающая к ней полка 403, а также перо 406 и торец 415 лопатки.

Если лопатка 130 представляет собой направляющую лопатку 130, она может быть снабжена на своем торце 415 другой полкой (не изображена).

В области 400 крепления лопатки выполнен хвостовик 183, который служит для крепления рабочих лопаток 120, 130 к валу или диску (не изображено).

Хвостовик 183 лопатки выполнен, например, в Т-образной форме. Возможны другие варианты осуществления в виде елки или ласточкина хвоста.

У лопатки 120, 130 имеется входная кромка 409 и выходная кромка 412 для среды, которая обтекает перо 406 лопатки.

У традиционных лопаток 120, 130 во всех областях 400, 403, 406 лопаток 120, 130 применяются, например, цельные металлические материалы, в частности суперсплавы.

Такие суперсплавы известны, например, из документов EP 1204776 B1, EP 1306454, EP 1319729 A1, WO 99/67435 или WO 00/44949.

При этом лопатка 120, 130 может быть изготовлена методом литья, также посредством направленной кристаллизации, методом ковки, методом фрезерования или их комбинаций.

Заготовки с монокристаллической структурой или структурами применяются в качестве деталей машин, которые при эксплуатации подвержены высоким механическим, термическим и/или химическим нагрузкам.

Изготовление такого рода монокристаллических заготовок осуществляется, например, посредством направленной кристаллизации из расплава. При этом речь идет о способах литья, при которых жидкий металлический сплав кристаллизуется с получением монокристаллической структуры, т.е. монокристаллической заготовки, или направленно.

При этом дендритные кристаллы ориентируются вдоль теплового потока и образуют либо столбчатую структуру кристаллических зерен (колоннообразную, т.е. зерна, которые проходят по всей длине заготовки и здесь, выражаясь общепринятым языком, называются направленно кристаллизованными) или монокристаллическую структуру, т.е. вся заготовка состоит из одного единственного кристалла. В этих способах необходимо избегать перехода к глобулярной (поликристаллической) кристаллизации, так как при ненаправленном росте обязательно образуются поперечные и продольные границы зерен, которые сводят на нет хорошие свойства полученного направленной кристаллизацией или монокристаллического конструктивного элемента.

Если речь идет о направленно-кристаллизованных структурах вообще, то под ними подразумеваются как монокристаллы, которые не имеют границ зерен или, в крайнем случае, имеют границы зерен с малыми углами, так и столбчатые кристаллические структуры, у которых, может быть, имеются проходящие в продольном направлении границы зерен, но нет поперечных границ зерен. В случае этих названных во вторую очередь кристаллических структур также говорят о направленно-кристаллизованных структурах.

Такие способы известны из документов US 6024792 и EP 0892090 A1.

Лопатки 120, 130 могут также иметь предлагаемые изобретением защитные слои 7 от коррозии или окисления.

Плотность предпочтительно составляет около 95% теоретической плотности.

На слое MCrAlX (как промежуточном слое или самом наружном слое) образуется защитный слой окиси алюминия (TGO = thermal grown oxide layer, термически выращенный оксидный слой).

На MCrAlX может также находиться теплобарьерный слой, который предпочтительно является самым наружным слоем и состоит, например, из ZrO2, Y2O3-ZrO2, т.е. он не стабилизирован или же частично или полностью стабилизирован окисью иттрия, и/или окисью кальция, и/или окисью магния.

Теплобарьерный слой покрывает весь слой MCrAlX.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), в теплобарьерном слое получаются зерна столбчатой формы.

Возможны другие способы нанесения покрытий, например атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплобарьерный слой может содержать пористые, имеющие микро- или макротрещины зерна. То есть теплобарьерный слой предпочтительно является более пористым, чем слой MCrAlX.

Лопатка 120, 130 может быть выполнена полой или цельной. При необходимости охлаждения лопатки 120, 130 она является полой и при необходимости имеет также отверстия 418 для пленочного охлаждения (обозначены штриховой линией).

На фиг. 5 показана камера 110 сгорания газовой турбины 100. Камера 110 сгорания выполнена, например, в виде так называемой кольцевой камеры сгорания, у которой множество расположенных в окружном направлении вокруг оси 102 вращения горелок 107, которые создают пламя 156, выходя в одно общее пространство 154 камеры сгорания. Для этого камера 110 сгорания выполнена в целом в виде кольцеобразной конструкции, которая расположена вокруг оси 102 вращения.

Для достижения сравнительно высокого коэффициента полезного действия камера 110 сгорания рассчитана на сравнительно высокую температуру рабочей среды М, составляющую примерно от 1000°C до 1600°C. Чтобы даже при этих неблагоприятных для материалов рабочих параметрах обеспечить возможность сравнительно долгого срока эксплуатации, стенка 153 камеры сгорания на своей обращенной к рабочей среде Μ стороне снабжена внутренней футеровкой, образованной из элементов 155 теплозащитного экрана.

В связи с высокими температурами внутри камеры 110 сгорания для элементов 155 теплозащитного экрана или, соответственно, для элементов их крепления может быть предусмотрена система охлаждения. Тогда элементы 155 теплозащитного экрана являются, например, полыми и при необходимости имеют также выходящие в пространство 154 камеры сгорания отверстия для охлаждения (не изображены).

Каждый элемент 155 теплозащитного экрана, изготовленный из сплава, оснащен со стороны рабочей среды особенно жаропрочным защитным слоем (слой MCrAlX и/или керамическое покрытие) или изготовлен из огнеупорного материала (цельные керамические кирпичи).

Эти защитные слои 7 могут быть аналогичны лопаткам турбины.

На MCrAlX может также находиться, например, керамический теплобарьерный слой, который состоит, например, из ZrО2, Y2O3-ZrО2, т.е. он не стабилизирован или же частично или полностью стабилизирован окисью иттрия, и/или окисью кальция, и/или окисью магния.

С помощью надлежащих способов нанесения покрытия, таких как, например, электронно-лучевое нанесение покрытий методом осаждения из паровой фазы (EB-PVD), в теплобарьерном слое получаются зерна столбчатой формы.

Возможны другие способы нанесения покрытий, например атмосферное плазменное напыление (APS), LPPS, VPS или CVD. Для улучшения стойкости к тепловому удару теплобарьерный слой может содержать пористые, имеющие микро- или макротрещины зерна.

Восстановление (ремонт) означает, что лопатки 120, 130 турбины, элементы 155 теплозащитного экрана после их применения при необходимости должны освобождаться от защитных слоев (например, посредством пескоструйной обработки). После этого осуществляется удаление коррозионных и/или оксидных слоев или, соответственно, продуктов. При необходимости осуществляется также ремонт трещин в лопатке 120, 130 турбины или элементе 155 теплозащитного экрана. После этого происходит повторное нанесение покрытия на лопатки 120, 130 турбины, элементы 155 теплозащитного экрана и повторное применение лопаток 120, 130 турбины или элементов 155 теплозащитного экрана.


СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
СПЛАВ, ЗАЩИТНЫЙ СЛОЙ И КОНСТРУКТИВНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Showing 41-50 of 1,427 items.
27.05.2013
№216.012.43ce

Способ регулирования для стана холодной прокатки с полным регулированием массового потока

Группа изобретений предназначена для повышения точности регулирования параметров прокатки на стане холодной прокатки, имеющем несколько проходимых последовательно холодной полосой (1) прокатных клетей (2) и расположенное перед первой прокатной клетью (2-1) устройство (3) подачи полосы....
Тип: Изобретение
Номер охранного документа: 0002482935
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43f9

Схема управления электродвигателем для рельсового транспортного средства и способ ее работы

Изобретение относится к рельсовому транспорту и представляет схему (10) управления электродвигателем для рельсового транспортного средства. Схема управления содержит расположенный на входе повышающий преобразователь, который преобразовывает прикладываемое на стороне входа электродвигателем...
Тип: Изобретение
Номер охранного документа: 0002482978
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43fb

Устройство для распознавания механического дефекта в проводе воздушной линии

Изобретение относится к устройству для распознавания механического дефекта в проводе воздушной линии. С проводом и опорной точкой соединено устройство для определения силы растяжения в проводе. Устройство соединено с оценочным устройством для сравнения силы растяжения с заданным значением и для...
Тип: Изобретение
Номер охранного документа: 0002482980
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4504

Лампа-вспышка для установок тревожной сигнализации

Лампа-вспышка для установок тревожной сигнализации содержит имеющий, по меньшей мере, один светодиод (1) источник (L) света и приводящую его в действие схему, которая имеет питание (2), преобразователь (W) тока и управление (В) вспышкой. Преобразователь (W) тока, источник (L) света и управление...
Тип: Изобретение
Номер охранного документа: 0002483245
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4554

Способ и устройство для контроля скорости

Группа изобретений относится к области контроля скорости рельсовых транспортных средств. Способ контроля скорости рельсовых транспортных средств заключается в том, что рельсовое транспортное средство излучает сигнал, время распространения которого на стороне участка пути оценивается в отношении...
Тип: Изобретение
Номер охранного документа: 0002483325
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.458c

Удерживающее устройство для трансформаторной обмотки с литьевой изоляцией

Изобретение относится к электротехнике, к креплению трансформаторной обмотки с литьевой изоляцией относительно сердечника. Технический результат состоит в упрощении монтажа без влияния на циркуляцию воздуха между внутренней стенкой обмотки и сердечником трансформатора. Удерживающее устройство...
Тип: Изобретение
Номер охранного документа: 0002483381
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45aa

Способ и устройство защиты для контроля сборных шин электрической сети энергоснабжения

Использование: в области электротехники. Технический результат - повышение надежности и снижение себестоимости защиты. Сборная шина (10) имеет ввод (11) и по меньшей мере два ответвления (12а, 12b, 12с), в каждом ответвлении (12а, 12b, 12с) предусмотрено устройство (16а, 16b, 16с) защиты...
Тип: Изобретение
Номер охранного документа: 0002483411
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45ad

Машина с удерживающим подшипником с антифрикционным слоем из жидкого металла

Изобретение относится к машине с удерживающим подшипником с антифрикционным слоем из жидкого металла. Машина имеет основной корпус (2), поворотный элемент и по меньшей мере одно подшипниковое устройство. Подшипниковое устройство имеет рабочий подшипник и сопоставленный рабочему подшипнику...
Тип: Изобретение
Номер охранного документа: 0002483414
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45d7

Приемник/источник данных, устройство передачи данных, прибор обработки данных и передачи данных и оконечное устройство данных для сети с коммутацией линий связи и сети с коммутацией пакетов

Изобретение относится к системам передачи данных, а именно к гибридным коммутационным системам, и может быть использовано для организации сетей с использованием приборов частного сектора. Технический результат заключается в обеспечении возможности устранения логического разделения между...
Тип: Изобретение
Номер охранного документа: 0002483456
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.49d8

Способ определения потребления электрической энергии

Изобретение относится к способу и средствам измерения электрической энергии. Техническим результатом, достигаемым при реализации заявленного изобретения, является достижение высокой точности определения потребляемой электрической энергии при частоте дискретизации измерений, подстраиваемой под...
Тип: Изобретение
Номер охранного документа: 0002484484
Дата охранного документа: 10.06.2013
Showing 41-50 of 943 items.
10.05.2013
№216.012.3cef

Способ прокатки полосы на прокатном стане с распознаванием кривизны

Изобретение предназначено для улучшения качества прокатываемых полос. В многоклетевом прокатном стане полоса (2) проходит последовательно через прокатные клети (1). Полоса (2) относительно средней линии (7) прокатки в каждую из прокатных клетей (1) вводится с известным соответствующим сдвигом...
Тип: Изобретение
Номер охранного документа: 0002481166
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d20

Способ ограничения угла между продольными осями соединенных друг с другом вагонных кузовов

Каждый вагонный кузов опирают лишь на одну поворотную тележку. На угол между продольными осями соединенных друг с другом через шарнир вагонных кузовов оказывают активное влияние с помощью соединенного с шарниром регулируемого электрического исполнительного элемента, пока он не примет заданное...
Тип: Изобретение
Номер охранного документа: 0002481215
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e26

Паросиловая установка для генерирования электрической энергии

Изобретение относится к энергетике. Паросиловая установка содержит обводной трубопровод, который соединяет с возможностью прохождения потока трубопровод свежего пара с трубопроводом отработавшего пара, при этом в обводном трубопроводе расположен обводной пароохладитель, который при аварийной...
Тип: Изобретение
Номер охранного документа: 0002481477
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.401a

Приводное устройство для рельсового транспортного средства

Изобретение относится к области рельсового транспорта. Приводное устройство (12), согласно изобретению, обеспечивает возможность создания имеющего особенно простую конструкцию и небольшую массу приводного устройства для рельсового транспортного средства большой мощности для диапазона скоростей...
Тип: Изобретение
Номер охранного документа: 0002481980
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.417e

Ротор для гидравлической машины

Изобретение касается ротора (2) для гидравлической машины, включающего в себя вал (6) и установленное на нем осевое упорное кольцо (8) в качестве элемента осевого подшипника, служащего для осевого опирания вала (6). Предлагается, чтобы осевое упорное кольцо (8) включало в себя первую...
Тип: Изобретение
Номер охранного документа: 0002482336
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4276

Фронтальный узел, прибородержатель с таким фронтальным узлом и распределительный шкаф с большим числом таких прибородержателей

Изобретение относится к электротехнике и может быть использовано в системах распределения энергии. Технический результат состоит в упрощении конструкции при сохранении безопасности. Фронтальный узел (3) для прибородержателя (1) содержит расположенную на передней панели управления фронтального...
Тип: Изобретение
Номер охранного документа: 0002482584
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4279

Способ и защитное устройство для формирования сигнала ошибки, который указывает неисправность обмотки в трансформаторе

Использование: в области электротехники. Технический результат заключается в повышении чувствительности. В способе с помощью по меньшей мере одного измеренного значения тока и по меньшей мере одного измеренного значения напряжения формируется измеренное значение запуска, которое сравнивается с...
Тип: Изобретение
Номер охранного документа: 0002482587
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.43ce

Способ регулирования для стана холодной прокатки с полным регулированием массового потока

Группа изобретений предназначена для повышения точности регулирования параметров прокатки на стане холодной прокатки, имеющем несколько проходимых последовательно холодной полосой (1) прокатных клетей (2) и расположенное перед первой прокатной клетью (2-1) устройство (3) подачи полосы....
Тип: Изобретение
Номер охранного документа: 0002482935
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43f9

Схема управления электродвигателем для рельсового транспортного средства и способ ее работы

Изобретение относится к рельсовому транспорту и представляет схему (10) управления электродвигателем для рельсового транспортного средства. Схема управления содержит расположенный на входе повышающий преобразователь, который преобразовывает прикладываемое на стороне входа электродвигателем...
Тип: Изобретение
Номер охранного документа: 0002482978
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.43fb

Устройство для распознавания механического дефекта в проводе воздушной линии

Изобретение относится к устройству для распознавания механического дефекта в проводе воздушной линии. С проводом и опорной точкой соединено устройство для определения силы растяжения в проводе. Устройство соединено с оценочным устройством для сравнения силы растяжения с заданным значением и для...
Тип: Изобретение
Номер охранного документа: 0002482980
Дата охранного документа: 27.05.2013
+ добавить свой РИД