×
10.05.2015
216.013.4889

СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ МАСЛА ИЗ СЕМЯН ТЫКВЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к масложировой промышленности. Масло из семян тыквы получают обработкой семян тыквы сверхкритической флюидной экстракцией. Семена тыквы собирают в октябре, высушивают при 30-35°C в течение 1,0-1,5 часов семена тыквы сорта крупная и измельчают до частиц размером 1,0-2,0 мм. Экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Полученное масло включает в качестве основного компонента линолевую кислоту в количестве 29,28 мас.% и дополнительно пальмитиновую кислоту 23,08 мас.%, стеариновую кислоту 7,12 мас.%. Изобретение позволяет повысить выход богатого линолевой кислотой масла с одновременным извлечением других биологически активных компонентов. 1 ил., 9 табл., 27 пр.
Основные результаты: Масло из семян тыквы, полученное обработкой семян тыквы, собранных в октябре, методом сверхкритической флюидной экстракции, при этом используют высушенные при 30-35°C в течение 1,0-1,5 часов семена тыквы сорта крупная, измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин, включающее в качестве основного компонента линолевую кислоту в количестве 29,28 мас.% и дополнительно пальмитиновую кислоту 23,08 мас.%, стеариновую кислоту 7,12 мас.%.
Реферат Свернуть Развернуть

Изобретение относится к пищевой промышленности и касается способа получения масла из семян тыквы, содержащего в качестве основного компонента линолевую кислоту, с помощью сверхкритической флюидной экстракции.

Известен способ получения тыквенного масла прессованием с предварительной влаготепловой обработкой измельченных семян при температуре 80-90°C и последующим фильтрованием масла [А.Н. Шиков, В.Г. Макаров, В.Е. Рыженков Растительные масла и масляные экстракты: технология, стандартизация, свойства. М.: Русский врач. 2004. С.120-121].

Недостатком этого метода является то, что он не позволяет получать масло с извлечением других жирных кислот (количество извлекаемых жирных кислот 6).

Известен способ получения экстракта из семян тыквы [патент РФ №2051596], включающий экстракцию семян тыквы растительным маслом в соотношении 1:2 на водяной бане в течение 1,5 часа с последующим центрифугированием и отделением целевого продукта.

Недостаток этого метода заключается в том, что он не позволяет получать чистое масло семян тыквы.

Известен способ получения масла из семян тыквы [патент РФ №2197977], включающий следующие этапы: стерилизация семян горячим воздухом при температуре 100-120°C в течение 2,5-3,5 минут с последующим понижением температуры растительного сырья до окружающей среды и механический отжим семян при 60°C.

Известен способ получения масла из семян тыквы [патент РФ №2170027], предусматривающий сортировку и сушку семян сначала при 20-22°C, а затем при 60-80°C и последующее прессование.

Известен способ получения масла из семян тыквы [патент РФ №2064485], заключающийся в сортировке семян, их сушке при 50-60°C в течение 15-20 минут и прессовании при 70°C с последующей фильтрацией при 40°C.

Известен способ получения масла из семян тыквы [патент РФ №2018514], предусматривающий измельчение семян до муки грубого помола, термическую обработку при температуре не выше 60°C и прессование.

Известен способ получения масла из семян тыквы [патент РФ №2441664], предусматривающий сортировку сырья, измельчение, обработку семян паром в течение 2-5 минут и их холодное прессование.

Известен способ получения масла из семян тыквы [патент РФ №2445111], который сводится к следующим этапам: обеззараживание семян, очистка от шелухи и примесей, пропаривание семян и их прессование сначала при 70-75°C, затем при 20-25°C и фильтрацией масла.

Недостатки этих методов заключаются в том, что термическая обработка семян на начальном этапе процесса может способствовать деструкции части ценных веществ, входящих в состав масла тыквы.

Нами было найдено, что измельчение высушенного при 30-35°C в течение 1,0-1,5 часов растительного сырья семян тыквы сорта крупная (Cucurbita maxima Dich) до размера частиц 1,0-2,0 мм приводит к увеличению выхода масла при проведении экстракции в течение 50 минут (таблица 2), при давлении 300 атмосфер (таблица 4), температуре 40°C (таблица 5) и скорости потока диоксида углерода 40 г/мин (таблица 6). При этом увеличивается одновременно извлечение других компонентов. При более длительной экстракции происходит уменьшение выхода ценных компонентов, в частности линолевой кислоты и других компонентов (таблица 3).

Уменьшение количества ценных соединений является недостатком способа получения масла из семян тыквы в течение более длительной экстракции.

Задачей, решаемой предлагаемым изобретением, является получение масла из семян тыквы, включающей линолевую кислоту, с более высоким выходом масла и одновременным извлечением кроме линолевой кислоты 13 других компонентов (чертеж). Поставленная задача решается с помощью масла из растительного сырья, представляющего семена тыквы, включающего линолевую кислоту. Масло получено методом сверхкритической флюидной экстракции высушенных при 30-35°C в течение 1,0-1,5 часов семян тыквы сорта крупная, измельченных до частиц размером 1,0-2,0 мм с последующей экстракцией в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Предпочтительно используют семена тыквы, собранные в октябре, так как выход масла из семян в этот период максимален (таблица 7). Измельчение сырья семян тыквы до размера частиц 1,0-2,0 мм приводит к повышению выхода масла из семян тыквы. Одновременно с линолевой кислотой извлекаются и другие ценные биологически активные компоненты, которые при других условиях экстракции не извлекаются в таком количестве. Измельчение сырья до размера частиц менее 1,0 мм (0,7 мм) привело к понижению выхода масла с 22,5% до 19,7% (таблица 2, пример 9). Сырье, измельченное до размера частиц 1,0-2,0 мм с последующей экстракцией в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин, позволяет получать масло из семян тыквы с более высоким содержанием и количеством активных компонентов, не нарушая их структуры. При более длительном времени экстракции, более 50 минут (таблица 3, пример 14), или более высоком давлении, более 300 атмосфер, (таблица 4, пример 17), или более высокой температуре, более 40°C (таблица 5, пример 20), или при более высокой скорости потока диоксида углерода, более 40 г/мин (таблица 6, пример 24), могут происходить нежелательные процессы, что приводит к уменьшению выхода линолевой кислоты и ряда других компонентов (таблица 3, пример 14).

При измельчении сырья до частиц размером 10 мм не достигается высокий выход масла (таблица 2, выход масла составляет 14,6%). При степени измельченности сырья 0,7 мм уменьшается количество линолевой кислоты с 28,1% (таблица 2, пример 7) до 21,6% (таблица 2, пример 9).

Ниже показано содержание компонентов в полученном масле по заявляемому способу.

Отличие предлагаемого изобретения от ранее известного заключается в том, что в качестве сырья используют высушенные при 30-35°C в течение 1,0-1,5 часов семена тыквы сорта крупная, собранные в октябре и измельченные до частиц размером 1,0-2,0 мм с последующей экстракцией в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин. Техническим результатом предлагаемого решения является получение масла из семян тыквы, включающего линолевую кислоту, с более высоким выходом с одновременным извлечением 13 других биологически активных компонентов (таблица 8). Соотношение ненасыщенных и насыщенных кислот масла из семян тыквы приведено в таблице 9.

Способ получения масла из семян тыквы заключается в следующем.

Высушенные при 30-35°C в течение 1,0-1,5 часов и измельченные до размера частиц 1,0-2,0 мм семена тыквы сорта крупная, собранные предпочтительно в октябре, массой 65 г засыпают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR). Растительное сырье обрабатывают в среде сверхкритического диоксида углерода в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин с последующим отделением масла.

Химический состав полученных образцов масла из семян тыквы исследовали методом хромато-масс-спектрометрии на приборе Agilent с библиотекой 40 тыс. химических соединений, количественное определение компонентов масла проводили методом газожидкостной хроматографии на хроматографе Shimadzu QP 2010 с масс-селективным детектором после превращения жирных кислот в соответствующие метиловые эфиры при обработке диазометаном. Эфирный раствор диазометана получали из N-нитрозо-N-метилмочевины по известной методике [Г. Беккер, Г. Домшке, Э. Фангхенель. Органикум: в 2 т. Т.2. М., 1979. С.248]. Для идентификации использовали библиотеку масс-спектров NIST 02. Хроматографирование осуществляли на колонке MDN-1 (метилсиликон, твердосвязанный) 30 м, диаметр - 0,25 мм. Режим хроматографирования: инжектор - 180°C; детектор - 200°C; интерфейс - 210°C; газ-носитель - гелий 1 мл/мин при делении потока 20:1; термостат 60°C - 1 мин, 2 град/мин - до 70°C, 5 град/мин - до 90°C, 10 град/мин - до 180°C, 20 град/мин - до 280°C, далее изотерма - 1 мин. Содержание компонентов масла из семян тыквы приведено в масс.%.

Пример 1

Точную навеску сырья (65 г) семян тыквы, высушенных при 30-35°C в течение 1,0-1,5 часов и измельченных до размера частиц 10 мм, помещают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR) и проводят экстракцию в среде сверхкритического диоксида углерода в течение 20 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Давление сбрасывают до атмосферного, а масло собирается в приемнике, оно представляет собой жидкость желтовато-красного цвета, показатель преломления изменялся в незначительных пределах и равен 1,4515-1,4935. Относительная плотность изменялась в пределах 0,9033-0,9560. Выход и состав основных компонентов масла приведены в таблице 1.

Пример 2

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 30 минут (выход и состав приведены в таблице 1).

Пример 3

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 40 минут (выход и состав приведены в таблице 1).

Пример 4

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 50 минут (выход и состав приведены в таблице 1).

Пример5.

Сырье (семена тыквы) измельчено до частиц размером 10 мм. Экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 6

Точную навеску сырья (65 г) семян тыквы, измельченного до частиц размером 7 мм, помещают в сверхкритический экстрактор. Экстракцию проводят 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 7

Аналогичен примеру 5, только навеску сырья (65 г) семян тыквы измельчают до частиц размером 2 мм (выход и состав приведены в таблице 2).

Пример 8

Аналогичен примеру 5, только навеску сырья (65 г) семян тыквы измельчают до частиц размером 1 мм (выход и состав приведены в таблице 2).

Пример 9

Аналогичен примеру 5, только навеску сырья (65 г) семян тыквы измельчают до частиц размером 0,7 мм (выход и состав приведены в таблице 2).

Пример 10

Аналогичен примеру 5, только навеску сырья (65 г) семян тыквы измельчают до частиц размером 1 мм. Экстракцию масла в сверхкритическом экстракторе проводили 20 минут (выход и состав приведены в таблице 3).

Пример 11

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 30 минут (выход и состав приведены в таблице 3).

Пример 12

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 40 минут (выход и состав приведены в таблице 3).

Пример 13

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 14

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 60 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 15

Аналогичен примеру 13, только экстракцию проводили при давлении 200 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 16

Аналогичен примеру 13, только экстракцию проводили при давлении 300 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 17

Аналогичен примеру 13, только экстракцию проводили при давлении 400 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 18

Аналогичен примеру 13, только экстракцию проводили при температуре 32°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 19

Аналогичен примеру 18, только экстракцию проводили при температуре 40°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 20

Аналогичен примеру 18, только экстракцию проводили при температуре 45°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 21

Аналогичен примеру 19, только экстракцию проводили при скорости потока диоксида углерода 20 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 22

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 30 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 23

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 40 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 24

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 50 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 25

Аналогичен примеру 13, только сбор сырья семян тыквы производили в сентябре месяце (выход масла приведен в таблице 7).

Пример 26

Аналогичен примеру 13, только сбор сырья семян тыквы производили в октябре месяце (выход масла приведен в таблице 7).

Пример 27

Аналогичен примеру 13, только сбор сырья семян тыквы производили в ноябре месяце (выход масла приведен в таблице 7).

Таким образом, в процессе поиска оптимальной степени измельченности сырья из семян тыквы сорта крупная, собранных преимущественно в октябре, содержащей линолевую кислоту, установлено, что оптимальным для достижения поставленной задачи является использование частиц размером 1,0-2,0 мм с последующей экстракцией в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин, так как при данных технологических условиях более высокий выход масла сочетается с более высоким содержанием линолевой кислоты и других биологически активных компонентов (таблица 2).

Приложения

Таблица 1
Выход масла из сырья семян тыквы, измельченного до размера частиц 10 мм, и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
1 20 12,6 17,3 14,5 14,5
2 30 18,2 20,5 12,8 11,3
3 40 20,3 23,8 18,1 12,1
4 50 22,5 29,28 23,08 15,43

Таблица 2
Выход масла из сырья семян тыквы и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от степени измельченности (продолжительность экстракции 50 минут)
№ примера Степень измельченности, мм Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
5 10 14,6 14,5 10,1 6,3
6 7 15,8 20,3 16,4 9,5
7 2 21,6 28,1 21,5 13,1
8 1 22,5 29,28 23,08 15,43
9 0,7 19,7 21,6 19,4 11,2

Таблица 3
Выход масла из сырья семян тыквы, измельченного до размера частиц 1 мм, и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
10 20 10,8 11,6 8,9 7,7
11 30 17,5 18,2 14,6 9,4
12 40 18,3 25,5 20,1 13,2
13 50 22,5 29,28 23,08 15,43
14 60 19,1 27,3 21,5 11,7

Таблица 4
Выход масла из сырья семян тыквы, измельченного до размера частиц 1 мм, при времени экстракции 50 минут и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от величины давления
№ примера Величина давления, атмосфер Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
15 200 18,1 22,8 12,4 8,1
16 300 22,5 29,28 23,08 15,43
17 400 20,3 25,6 20,1 11,8

Таблица 5
Выход масла из сырья семян тыквы, измельченного до размера частиц 1 мм, при времени экстракции 50 минут и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от температуры
№ примера температура, °C Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
18 32 15,4 25,6 11,4 14,6
19 40 22,5 29,28 23,08 15,43
20 45 17,1 22,5 19,1 10,8

Таблица 6
Выход масла из сырья семян тыквы, измельченного до размера частиц 1 мм, при времени экстракции 50 минут и содержание в нем линолевой кислоты, пальмитиновой кислоты и олеиновой кислоты в зависимости от скорости потока диоксида углерода
№ примера Скорость потока диоксида углерода, г/минута Выход масла(в % от сухого сырья) Количество основных компонентов масла (масс.% от цельного масла)
линолевая кислота пальмитиновая кислота олеиновая кислота
21 20 10,3 12,1 9,8 6,2
22 30 16,7 20,9 16,5 9,7
23 40 22,5 29,28 23,08 15,43
24 50 20,2 25,5 15,3 12,3

Таблица 7
Выход масла из сырья семян тыквы, измельченного до размера частиц 1 мм, при времени экстракции 50 минут в зависимости от времени сбора
№ примера Месяц Выход масла (в % от сухого сырья)
25 сентябрь 19,2
26 октябрь 22,5
27 ноябрь 20,7

Таблица 8
Количественный состав масла из семян тыквы по данным газовой хроматографии
№ пика Время выхода, мин Содержание, % Идентифицированное соединение
1 5,78 0,42 Миристиновая кислота
2 6,65 0,23 Пентадециловая кислота
3 7,35 0,36 Пальмитолеиновая кислота
4 7,58 23,08 Пальмитиновая кислота
5 8,67 0,24 15-метилпальмитиновая кислота
6 9,51 29,28 Линолевая кислота
7 9,62 15,43 Олеиновая кислота
8 9,69 1,49 цис-6-октадеценовая кислота
9 10,07 7,12 Стеариновая кислота
10 10,53 5,48 9,12-октадекадиен-1-ол
11 12,95 0,33 Арахидоновая кислота
12 15,27 0,41 Циклопентантридекановая кислота
13 15,83 1,11 Генейкозановая кислота
14 16,31 15,02 Сквален

Таблица 9
Соотношение ненасыщенных и насыщенных кислот масла семян тыквы
Ненасыщенные кислоты Насыщенные кислоты
Пальмитолеиновая кислота Миристиновая кислота
Линолевая кислота Пентадециловая кислота
Олеиновая кислота Пальмитиновая кислота
цис-6-октадеценовая кислота 15-метилпальмитиновая кислота
Стеариновая кислота
Арахидоновая кислота
Циклопентантридекановая кислота
Генейкозановая кислота
1,41 1

Масло из семян тыквы, полученное обработкой семян тыквы, собранных в октябре, методом сверхкритической флюидной экстракции, при этом используют высушенные при 30-35°C в течение 1,0-1,5 часов семена тыквы сорта крупная, измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин, включающее в качестве основного компонента линолевую кислоту в количестве 29,28 мас.% и дополнительно пальмитиновую кислоту 23,08 мас.%, стеариновую кислоту 7,12 мас.%.
СПОСОБ ПОЛУЧЕНИЯ И СОСТАВ МАСЛА ИЗ СЕМЯН ТЫКВЫ
Источник поступления информации: Роспатент

Showing 1-10 of 82 items.
20.04.2013
№216.012.3654

Система подъема затонувшего судна

Изобретение относится к устройствам подъема затонувших плавсредств на поверхность моря с разных глубин их залегания. Система подъема затонувшего судна содержит базовое надводное судно и обслуживаемые им средства контакта с затонувшим судном. Судно закреплено на поверхности моря носовым и...
Тип: Изобретение
Номер охранного документа: 0002479461
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3857

Способ возделывания лотоса орехоносного в контейнерах

Изобретение относится к области сельского хозяйства. В способе семена или корневища лотоса орехоносного высаживают в контейнеры, не менее чем на / заполненные грунтом, состоящим из навоза или хорошо перегнившей растительной мульчи, мха сфагнума, песка и глины в равных пропорциях. После посадки...
Тип: Изобретение
Номер охранного документа: 0002479984
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3a07

Установка для повышения биологической активности воды

Изобретение относится к электрохимической обработке воды, используемой, например, в качестве средств регулирования кислотно-основных, окислительно-восстановительных свойств, а также технологических водных растворов, применяемых в сельскохозяйственном производстве для предпосевной обработки...
Тип: Изобретение
Номер охранного документа: 0002480416
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e86

Способ определения содержания тяжелых фракций углеводородов в моторных маслах и топливах с помощью химического сенсора

Изобретение относится к контролю качества моторных топлив и может быть использовано для определения содержания тяжелых фракций углеводородов в моторных маслах и топливах. Способ характеризуется тем, что в качестве химического сенсора используется композитный сорбент следующего состава, мас.%...
Тип: Изобретение
Номер охранного документа: 0002481573
Дата охранного документа: 10.05.2013
27.05.2013
№216.012.4369

Гигиеническое средство от пота и запаха ног и способ его использования

Изобретение относится к косметологии и представляет собой гигиеническое средство от пота и запаха ног, помещенное в герметичный пакет из термосвариваемого материала, во внутренней полости которого размещены порошкообразные ингредиенты гигиенического средства, помещенные в контейнеры,...
Тип: Изобретение
Номер охранного документа: 0002482834
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4921

Ветровой теплогенератор

Изобретение относится к ветроэнергетике и может быть использовано для приготовления горячей воды и снабжения ею различных потребителей. Ветровой теплогенератор содержит ветродвигатель с силовым валом, связанный через муфту с валом теплогенератора, имеющим лопатки и бочкообразный корпус,...
Тип: Изобретение
Номер охранного документа: 0002484301
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4977

Солнечно-ветровой воздухонагреватель

Изобретение относится к ветровой энергетике и может быть использовано в сушилках и отоплении промышленных и другого назначения объектов. Солнечно-ветровой воздухонагреватель содержит солнечный тепловой коллектор, цилиндрический корпус с крышкой, в котором установлен электрический генератор на...
Тип: Изобретение
Номер охранного документа: 0002484387
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4979

Вариаторный теплогенератор

Изобретение относится к отопительной технике и может быть использовано для нагрева воды для горячего водоснабжения и отопления, а также освещения помещений с использованием энергии ветра. Теплогенератор содержит цилиндрический корпус, крышку и днище. Внутри корпуса на кольце, прикрепленном к...
Тип: Изобретение
Номер охранного документа: 0002484389
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.5410

Способ получения гидразонов нитро-1,2,3-триазол-4-ил карбальдегида

Изобретение относится к способу получения новых гидразонов нитро-1,2,3-триазол-4-ил карбальдегида общей формулы Iа и Iб где Ia, R=H, R=CHOC; Iб R=СН, R=H; путем взаимодействия 4-тринитрометил-1,2,3-триазола общей формулы II где R и R = имеют указанные выше значения, с эквимольным количеством...
Тип: Изобретение
Номер охранного документа: 0002487123
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5731

Способ определения способности к персистенции staphylococcus aureus

Изобретение относится к урологии и может быть использовано, в частности, для определения роли микроорганизмов в развитии инфекционных заболеваний урогенитальной сферы. Изобретение раскрывает способ определения способности к персистенции Staphylococcus aureus, путем определения биологических...
Тип: Изобретение
Номер охранного документа: 0002487929
Дата охранного документа: 20.07.2013
Showing 1-10 of 85 items.
20.04.2013
№216.012.3654

Система подъема затонувшего судна

Изобретение относится к устройствам подъема затонувших плавсредств на поверхность моря с разных глубин их залегания. Система подъема затонувшего судна содержит базовое надводное судно и обслуживаемые им средства контакта с затонувшим судном. Судно закреплено на поверхности моря носовым и...
Тип: Изобретение
Номер охранного документа: 0002479461
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3857

Способ возделывания лотоса орехоносного в контейнерах

Изобретение относится к области сельского хозяйства. В способе семена или корневища лотоса орехоносного высаживают в контейнеры, не менее чем на / заполненные грунтом, состоящим из навоза или хорошо перегнившей растительной мульчи, мха сфагнума, песка и глины в равных пропорциях. После посадки...
Тип: Изобретение
Номер охранного документа: 0002479984
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3a07

Установка для повышения биологической активности воды

Изобретение относится к электрохимической обработке воды, используемой, например, в качестве средств регулирования кислотно-основных, окислительно-восстановительных свойств, а также технологических водных растворов, применяемых в сельскохозяйственном производстве для предпосевной обработки...
Тип: Изобретение
Номер охранного документа: 0002480416
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e86

Способ определения содержания тяжелых фракций углеводородов в моторных маслах и топливах с помощью химического сенсора

Изобретение относится к контролю качества моторных топлив и может быть использовано для определения содержания тяжелых фракций углеводородов в моторных маслах и топливах. Способ характеризуется тем, что в качестве химического сенсора используется композитный сорбент следующего состава, мас.%...
Тип: Изобретение
Номер охранного документа: 0002481573
Дата охранного документа: 10.05.2013
27.05.2013
№216.012.4369

Гигиеническое средство от пота и запаха ног и способ его использования

Изобретение относится к косметологии и представляет собой гигиеническое средство от пота и запаха ног, помещенное в герметичный пакет из термосвариваемого материала, во внутренней полости которого размещены порошкообразные ингредиенты гигиенического средства, помещенные в контейнеры,...
Тип: Изобретение
Номер охранного документа: 0002482834
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4921

Ветровой теплогенератор

Изобретение относится к ветроэнергетике и может быть использовано для приготовления горячей воды и снабжения ею различных потребителей. Ветровой теплогенератор содержит ветродвигатель с силовым валом, связанный через муфту с валом теплогенератора, имеющим лопатки и бочкообразный корпус,...
Тип: Изобретение
Номер охранного документа: 0002484301
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4977

Солнечно-ветровой воздухонагреватель

Изобретение относится к ветровой энергетике и может быть использовано в сушилках и отоплении промышленных и другого назначения объектов. Солнечно-ветровой воздухонагреватель содержит солнечный тепловой коллектор, цилиндрический корпус с крышкой, в котором установлен электрический генератор на...
Тип: Изобретение
Номер охранного документа: 0002484387
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4979

Вариаторный теплогенератор

Изобретение относится к отопительной технике и может быть использовано для нагрева воды для горячего водоснабжения и отопления, а также освещения помещений с использованием энергии ветра. Теплогенератор содержит цилиндрический корпус, крышку и днище. Внутри корпуса на кольце, прикрепленном к...
Тип: Изобретение
Номер охранного документа: 0002484389
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.5410

Способ получения гидразонов нитро-1,2,3-триазол-4-ил карбальдегида

Изобретение относится к способу получения новых гидразонов нитро-1,2,3-триазол-4-ил карбальдегида общей формулы Iа и Iб где Ia, R=H, R=CHOC; Iб R=СН, R=H; путем взаимодействия 4-тринитрометил-1,2,3-триазола общей формулы II где R и R = имеют указанные выше значения, с эквимольным количеством...
Тип: Изобретение
Номер охранного документа: 0002487123
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5731

Способ определения способности к персистенции staphylococcus aureus

Изобретение относится к урологии и может быть использовано, в частности, для определения роли микроорганизмов в развитии инфекционных заболеваний урогенитальной сферы. Изобретение раскрывает способ определения способности к персистенции Staphylococcus aureus, путем определения биологических...
Тип: Изобретение
Номер охранного документа: 0002487929
Дата охранного документа: 20.07.2013
+ добавить свой РИД