×
20.04.2015
216.013.4201

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВИДА И КОНЦЕНТРАЦИИ НАНОЧАСТИЦ В НЕОРГАНИЧЕСКИХ АМОРФНЫХ СРЕДАХ И КОМПОЗИТАХ НА ОСНОВЕ ПОЛИМЕРОВ

Вид РИД

Изобретение

Аннотация: Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров может найти применение в электронике, радиотехнике, природоохранной, химической и нефтяной отраслях для контроля качества проведения технологических процессов и качества готовой продукции, например, при создании полимерных нанокомпозитов, функциональных электронных и радиотехнических элементов. Технической задачей является повышение точности определения концентрации наночастиц в аморфных средах любой природы путем уменьшения влияния фоновых токов на результат измерения. Поставленная задача решается тем, что создается измерительная ячейка, состоящая из двух инжекционных слоев проводящего материала и слоя исследуемого материала между ними, полученная измерительная ячейка помещается в низкотемпературную среду, в которой фоновые токи достигают своего минимального значения и не оказывают существенного влияния на результат измерения, затем измерительная ячейка включается в цепь и снимается вольт-амперная характеристика, по которой определяются значения резонансных потенциалов и соответствующие им значения резонансных токов, далее полученные значения резонансных потенциалов сравниваются с базой данных резонансных потенциалов известных наночастиц и осуществляется идентификация наночастиц в исследуемом материале, затем готовится эталонный образец материала с низкой концентрацией идентифицированных наночастиц, формируется измерительная ячейка, состоящая из двух инжекционных слоев проводящего материала и эталонного материала между ними, полученная эталонная измерительная ячейка помещается в низкотемпературную среду и включается в цепь, после чего снимается вольт-амперная характеристика, по которой определяются резонансные потенциалы и соответствующие им значения резонансных токов, на основании полученных значений резонансных токов в исследуемом и эталонном образцах, а также известного значения концентрации в эталонном образце рассчитывается концентрация наночастиц в исследуемом образце.
Основные результаты: Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров, согласно которому формируют измерительную ячейку, состоящую из двух инжекционных слоев проводящего материала и слоя исследуемого материала между ними, включают полученную измерительную ячейку в цепь и снимают вольт-амперную характеристику, по которой определяют значения резонансных потенциалов и соответствующие им значения резонансных токов, затем полученные значения резонансных потенциалов сравнивают с базой данных резонансных потенциалов известных наночастиц и осуществляют идентификацию наночастиц в исследуемом материале, далее готовят эталонный образец материала, содержащий известное количество идентифицированных частиц, и формируют измерительную ячейку, состоящую из двух инжекционных слоев проводящего материала и эталонного материала между ними, включают полученную эталонную измерительную ячейку в цепь и снимают вольт-амперную характеристику, по которой определяют резонансные потенциалы и соответствующие им значения резонансных токов, на основании полученных значений резонансных токов в исследуемом и эталонном образцах, а также известного значения концентрации в эталонном образце рассчитывают концентрацию наночастиц в исследуемом образце, отличающийся тем, что измерительную ячейку с исследуемым и эталонным образцами материала погружают в низкотемпературную среду, в которой фоновые токи, вызванные собственной примесной проводимостью аморфного материала и обуславливающие большую погрешность измерений при обычной температуре, достигают своих минимальных значений и не оказывают существенного влияния на результат измерений.

Предлагаемое изобретение относится к области физических измерений и может найти широкое применение в промышленности для анализа аморфных сред на наличие в них наночастиц различных видов.

Известен способ, реализуемый на полупроводниковом устройстве (патент US 6031245, H01L 29/06, 29.02.2000), состоящем из двух активных пленок, расположенных между двумя барьерными слоями, позволяющий по величине резонансного пика на вольт-амперной характеристике прибора определять наличие наночастиц в контролируемой среде.

Недостатком этого способа является невозможность его применения для идентификации наночастиц и определения их концентрации в аморфных веществах.

Также известен способ (патент US 4780749, H01L 29/88, 25.10.1988), реализуемый на двухбарьерном туннельном диоде с модифицированным инжекционным слоем, использование которого позволяет идентифицировать наночастицы в исследуемой среде по значениям напряжения, при котором происходит туннелирование электронов через двойной потенциальный барьер.

Недостатком способа является невозможность его применения для идентификации наночастиц и определения их концентрации в веществах с неупорядоченной кристаллической решеткой.

За прототип принят способ, реализуемый на основе резонансно-туннельной структуры с встроенным слоем исследуемой среды, содержащей наночастицы, идентификация и измерение концентрации которых осуществляется путем сравнения резонансных потенциалов вольт-амперной характеристики измерительной ячейки с базой данных резонансных потенциалов различных видов наночастиц, при этом концентрация наночастиц определяется по величине резонансного тока.

Недостатком данного способа является его низкая точность при определении концентрации наночастиц в аморфных веществах, таких как полимеры и неорганические диэлектрики с неупорядоченной структурой. Это явление обусловлено влиянием собственных примесей и дефектов аморфных веществ на величину результирующего тока, по величине которого судят о концентрации наночастиц в исследуемой среде.

Техническая задача изобретения заключается в повышении точности определения концентрации наночастиц в аморфных веществах различной природы.

Поставленная техническая задача решается тем, что для определения концентрации наночастиц в исследуемой среде измерительная ячейка, состоящая из двух инжекционных слоев металла и наноразмерного слоя исследуемого вещества, включается в измерительную цепь и помещается в низкотемпературную среду (Т=77 К), в которой величина фоновых токов, обуславливающих высокую погрешность измерений при нормальной температуре (Т=300 К), значительно сокращается, а величина резонансного тока увеличивается, способствуя повышению точности измерений в несколько раз (фиг.1).

В основе предложенного метода лежит так называемый «эффект размерного квантования», который заключается в том, что спектр энергий наноразмерных частиц является дискретным и принимает строго определенные значения (Е1, Е2, Е3…Еn) в зависимости от размера, материала и вида наночастицы (Демиховский В.Я. Физика квантовых низкоразмерных структур/В.Я. Демиховский, Г.А. Вультер. - М.: Логос, 2000. - 248 с.). Эта зависимость может быть использована в измерительных целях для идентификации наночастиц и определения их концентрации в исследуемом образце. Для этого необходимо сформировать измерительную ячейку (фиг.2), состоящую из двух инжекционных слоев металла 1,4 и слоя исследуемого материала 2 с наночастицами 3, которые образуют многочисленные потенциальные барьеры и потенциальные ямы с квантованными уровнями энергии Е1, Е2, Е3, …, Еn. При включении данной структуры в цепь и приложении к ней внешнего напряжения U величина тока, протекающего через измерительную ячейку, будет равна (Davies, J.Н. (1998). The physics of low-dimensional semiconductors: an introduction, Cambridge University Press, Cambridge.):

где IР(U) - ток, обусловленный резонансным туннелированием через двухбарьерную структуру; IФ(U) - фоновый ток, возникающий в результате термоэлектронной эмиссии, ловушечной и примесной проводимости диэлектрической матрицы, а также нерезонансного туннелирования через более высокие квазистационарные уровни; S0 - площадь поперечного сечения туннельно-резонансной структуры; Sx - площадь, которую занимают наночастицы в общей площади S0 поперечного сечения туннельно-резонансной структуры; JP(U) - плотность резонансно-туннельного тока; JФ(U) - плотность фонового тока. При этом плотности резонансного JP(U) и фонового JФ(U) токов находятся по формулам:

где e - заряд электрона, равный 1,602176565(35)·10-19 Кл; m - эффективная масса электрона; kB - постоянная Больцмана, равная 1,3806488(13)·10-23 Дж·К-1; ΔЕr - ширина резонансного пика, Дж; ħ - постоянная Планка, равная 1,054·10-34 Дж·с; ЕF - энергия уровня Ферми, Дж; Еr - энергия резонансного уровня, Дж; U - приложенное напряжение, В; T - температура, К; β - эмпирический коэффициент неидеальности.

Расчеты, сделанные на основе зависимостей (1-3), показывают наличие локальных максимумов тока I1 I2, I3, …, In на вольт-амперной характеристике измерительной ячейки, которые возникают при совпадении квантованных уровней энергии Е1, Е2, Е3, …, Еn наночастиц, содержащихся в исследуемой среде, с потенциалом внешнего электрического поля U1, U2, U3, …, Un. При этом значение потенциала внешнего электрического поля в вольтах равно значению энергии квантованных уровней в электронвольтах (Физическая энциклопедия /Гл. Ред. А.М. Прохоров. Ред. кол. Д.М. Алексеев, А.М. Балдин, А.М. Бонч-Бруевич, А.С. Боровик-Романов и др. - М.: Большая Российская энциклопедия. Т.5. Стробоскопические приборы - Яркость. 1998. С.545).

Количество квантованных уровней и их значения (Е1, Е2, E3, …, Еn) однозначно определяются видом наночастиц в исследуемой среде и позволяют провести их идентификацию, используя заранее рассчитанные значения квантованных уровней энергии для каждого конкретного вида наночастиц (Заводинский В.Г. Компьютерное моделирование наночастиц и наносистем / В.Г. Заводинский. - М.: ФИЗМАТЛИТ, 2012. - 176 с.).

Проведенные экспериментальные исследования показали, что величина максимумов тока I1, I2, I3, …, In на вольт-амперной характеристике зависит от концентрации наночастиц в исследуемом материале. При температуре окружающей среды Т=300 К эта зависимость носит нелинейный характер, а резонансные всплески тока слабо выражены, что обусловлено большим влиянием на результирующий ток I(U) фоновой составляющей IФ(U), которая возникает в результате термоэлектронной эмиссии, ловушечной и примесной проводимости диэлектрической матрицы, а также нерезонансного туннелирования через более высокие квазистационарные уровни. В связи с этим получить однозначную зависимость тока I(U) от концентрации наночастиц в исследуемом материале достаточно сложно.

Решить данную проблему можно путем уменьшения температуры среды, в которой находится измерительная ячейка, вплоть до температуры жидкого азота (Т=77 К). При этой температуре фоновая составляющая IФ(U) стремится к нулю, а результирующий ток I(U) практически полностью определяется резонансной составляющей Jp(U):

При этом Sx зависит от концентрации Сх наночастиц как:

Для образца материала с заранее заданной концентрацией Сэт наночастиц с учетом (4) и (5) величина резонансного тока равна:

Для исследуемого образца с искомой концентрацией Сх величина резонансного тока равна:

Совместное решение уравнений (6) и (7) позволяет получить выражение для расчета концентрации наночастиц в исследуемом материале Сх по величинам резонансных токов Ipx(U), Ipэт(U) и на основании известной концентрации наночастиц в эталонном образце Сэт:

Для максимального исключения взаимного влияния сопутствующих наночастиц на результаты измерения необходимо усреднить полученные значения концентраций по всем квазистационарным состояниям:

Для идентификации и определения концентрации наночастиц в исследуемом материале на основании полученных выражений (8)-(9) используется следующая методика.

На первом этапе формируется измерительная ячейка, содержащая образец исследуемого материала с неизвестной концентрацией неидентифицированных частиц. Для ее изготовления из исследуемой среды отбирают пробу, смешивают ее с растворителем (спирт, ацетон и т.д.), полученную субстанцию распыляют в закрытом объеме и осаждают на поверхность первого инжекционного слоя, в качестве которого используются пластины металла или полупроводника. Время осаждения выбирают таким образом, чтобы толщина осажденного слоя была равна 30-40 нм. После завершения процесса осаждения проводят сушку полученной структуры при температуре 100°C в течение 10-15 минут. Затем к поверхности осажденного слоя прикладывают полированную пластину из проводящего материала (медь, алюминий, серебро и т.д.), которую предварительно нагревают до 100°C для обеспечения более прочного соединения с осажденным слоем. В результате получают измерительную ячейку, состоящую из двух инжекционных слоев металла или полупроводника с тонким слоем исследуемого материала между ними.

Далее полученную измерительную ячейку 1 помещают в криостат 2 при температуре Т=77 К и включают в измерительную цепь (фиг.3), состоящую из последовательно соединенных блока питания 3, регистратора тока 4, переменного резистора 5 и параллельно подключенного регистратора напряжения 6. С помощью переменного резистора меняют напряжение на измерительной ячейке от 0 В до 10 В, при этом на регистраторе тока и регистраторе напряжения измеряют значения тока и напряжения, по которым строят вольт-амперную характеристику.

По графику вольт-амперной характеристики определяют резонансные потенциалы U1, U2, U3, …, Un, при которых наблюдаются локальные максимумы тока Iрх1, Iрх2, Iрх3, …, Iрхn. Полученные значения потенциалов U1, U2, U3, …, Un, соответствующие квантованным уровням энергии E1, Е2, Е3, …, Еn содержащихся в исследуемой среде наночастиц, сравнивают с базой данных резонансных потенциалов известных наночастиц и осуществляют идентификацию наночастиц в исследуемой среде. Базы данных резонансных потенциалов для различных видов наночастиц получают на основании квантово-механических моделей, построенных методами молекулярной механики и квантовой химии, с использованием специализированных компьютерных программ (MoDyp©, DockSearch, SPARTAN, Alchemy 2000, NAMD, VMD, GROMACS, HyperChem).

После идентификации наночастиц в исследуемой среде подбирают эталонный образец материала с известной концентрацией Сэт данных наночастиц. При этом в качестве эталонного образца выбирается материал с предельно низкой концентрацией наночастиц, что позволяет значительно снизить стоимость исследований.

Затем формируют вторую измерительную ячейку, состоящую из двух инжекционных слоев проводящего материала и слоя эталонного материала между ними. Для создания второй измерительной ячейки с эталонным материалом используется та же технология, что и для получения первой измерительной ячейки, содержащей исследуемый материал. При этом толщины осажденных слоев эталонного и исследуемого материалов в первой и второй измерительных ячейках должны быть равны.

Полученную измерительную ячейку 1 с эталонным материалом помещают в криостат при температуре Т=77 К и включают в измерительную цепь (фиг.2). С помощью переменного резистора 3 меняют напряжение на измерительной ячейке от 0 В до 10 В, при этом на регистраторе тока 2 и регистраторе напряжения 4 измеряют значения тока и напряжения, по которым строят вольт-амперную характеристику. По графику вольт-амперной характеристики определяют значения локальных максимумов тока Ipэт1, Ipэт2, 1рэт3, …, Iрэтn и соответствующие им значения резонансных потенциалов U1, U2, U3, …, Un. Совпадение значений резонансных потенциалов на вольт-амперных характеристиках эталонного и исследуемого образцов свидетельствует об идентичности наночастиц в обоих образцах. На последнем этапе по формуле (8), используя известное значение концентрации наночастиц Сэт в эталонном образце, измеренные значения локальных максимумов тока Iрэт1, Iрэт2, Ipэт3, …, Ipэтn для эталонного образца и значения максимумов тока Ipx1, Ipх2, Ipх3, …, Ipxn для исследуемого образца, рассчитывают значения концентрации наночастиц Сх в исследуемом образце при всех резонансных потенциалах U1, U2, U3, …, Un и далее по формуле (9) определяют среднее значение концентрации Сх.ср частиц в исследуемом образце.

Предложенный способ в отличие от способа, взятого за прототип, позволяет проводить идентификацию наночастиц в аморфных средах любой природы, а также с высокой точностью измерять их концентрацию благодаря тому, что измерительная ячейка, содержащая исследуемый материал с наночастицами, помещается в низкотемпературную среду (Т=77К), в которой фоновые токи, вызванные собственной примесной проводимостью аморфного материала и обуславливающие большую погрешность измерений при обычной температуре (T=300К), достигают своих минимальных значений и не оказывают существенного влияния на результат измерений. Дополнительным достоинством метода является возможность использования эталонного образца с низкой концентрацией наночастиц, что значительно снижает затраты на производство эталонных образцов, содержащих дорогостоящие наночастицы благородных металлов, фуллеренов и т.д.

Предложенный способ может найти широкое применение в различных отраслях промышленности, в частности, при создании функциональных материалов на основе наночастиц и полимеров, для контроля параметров полупроводниковых элементов на основе гетероструктур в ходе их производства, а также для экологического мониторинга состояния окружающей среды.

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров, согласно которому формируют измерительную ячейку, состоящую из двух инжекционных слоев проводящего материала и слоя исследуемого материала между ними, включают полученную измерительную ячейку в цепь и снимают вольт-амперную характеристику, по которой определяют значения резонансных потенциалов и соответствующие им значения резонансных токов, затем полученные значения резонансных потенциалов сравнивают с базой данных резонансных потенциалов известных наночастиц и осуществляют идентификацию наночастиц в исследуемом материале, далее готовят эталонный образец материала, содержащий известное количество идентифицированных частиц, и формируют измерительную ячейку, состоящую из двух инжекционных слоев проводящего материала и эталонного материала между ними, включают полученную эталонную измерительную ячейку в цепь и снимают вольт-амперную характеристику, по которой определяют резонансные потенциалы и соответствующие им значения резонансных токов, на основании полученных значений резонансных токов в исследуемом и эталонном образцах, а также известного значения концентрации в эталонном образце рассчитывают концентрацию наночастиц в исследуемом образце, отличающийся тем, что измерительную ячейку с исследуемым и эталонным образцами материала погружают в низкотемпературную среду, в которой фоновые токи, вызванные собственной примесной проводимостью аморфного материала и обуславливающие большую погрешность измерений при обычной температуре, достигают своих минимальных значений и не оказывают существенного влияния на результат измерений.
СПОСОБ ОПРЕДЕЛЕНИЯ ВИДА И КОНЦЕНТРАЦИИ НАНОЧАСТИЦ В НЕОРГАНИЧЕСКИХ АМОРФНЫХ СРЕДАХ И КОМПОЗИТАХ НА ОСНОВЕ ПОЛИМЕРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВИДА И КОНЦЕНТРАЦИИ НАНОЧАСТИЦ В НЕОРГАНИЧЕСКИХ АМОРФНЫХ СРЕДАХ И КОМПОЗИТАХ НА ОСНОВЕ ПОЛИМЕРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ВИДА И КОНЦЕНТРАЦИИ НАНОЧАСТИЦ В НЕОРГАНИЧЕСКИХ АМОРФНЫХ СРЕДАХ И КОМПОЗИТАХ НА ОСНОВЕ ПОЛИМЕРОВ
Источник поступления информации: Роспатент

Showing 41-50 of 54 items.
20.12.2015
№216.013.9c09

Способ и система автоматического управления

Изобретение относится к автоматике и может быть использовано в чистых помещениях для поддержания постоянной оптимальной температуры. Технический результат - автоматизация регулирования системами в адаптивном диапазоне за счет адаптивной оценки сигнала по программно-управляемой нормируемой мере....
Тип: Изобретение
Номер охранного документа: 0002571570
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9d37

Установка для сушки дисперсных растительных материалов в полидисперсном слое инертных тел

Изобретение относится к сушильной технике, а более конкретно к сушилкам с активным гидродинамическим режимом, предназначенным для сушки дисперсных растительных материалов с использованием инертных тел, и может найти применение в производстве пищевых продуктов, медицинских препаратов и...
Тип: Изобретение
Номер охранного документа: 0002571877
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c2ae

Способ диагностики воспалительных заболеваний костей и суставов

Изобретение относится к медицине, а именно к способам диагностики заболеваний костей и суставов, и может быть использовано в хирургических клиниках. Способ осуществляют путем определения тепловых характеристик тела при регистрации тепловых потоков больного и симметричного ему здорового участков...
Тип: Изобретение
Номер охранного документа: 0002574141
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4a7

Способ неразрушающего контроля теплофизических характеристик строительных материалов и изделий

Изобретение относится к области теплофизических измерений и может быть использовано в строительной теплотехнике и различных отраслях промышленности. Согласно заявленному способу на поверхность исследуемого твердого строительного материала воздействуют электромагнитным полем СВЧ-диапазона с...
Тип: Изобретение
Номер охранного документа: 0002574229
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.3a6d

Бесконтактный способ измерения поверхностного натяжения жидкостей

Изобретение относится к области измерительной техники, в частности к бесконтактным аэродинамическим способам контроля поверхностного натяжения жидкостей, и может найти применение в химической промышленности и энергетике. Способ измерения поверхностного натяжения жидкости заключается в...
Тип: Изобретение
Номер охранного документа: 0002583333
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3e7a

Декоративная плита для внутренней отделки

Изобретение используется в строительстве в качестве внутренней отделки общественных зданий. Техническая задача: разработать новый отделочный материал для внутренней декоративной отделки зданий общественного назначения, отличающийся повышенной долговечностью. Декоративная плита для внутренней...
Тип: Изобретение
Номер охранного документа: 0002584433
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.46a2

Способ определения составляющих импеданса биообъекта

Изобретение относится к медицине и может быть использовано для оценки функционального состояния организма. Способ определения составляющих импеданса биологического объекта состоит в измерении напряжения на биообъекте на границах диапазона, при этом определяют активное сопротивление и...
Тип: Изобретение
Номер охранного документа: 0002586457
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.642f

Способ измерения вязкости газа

Изобретение относится к области технической физики, в частности к способам измерения вязкости газов, и может найти применение в различных отраслях промышленности и в лабораторной практике. Способ измерения вязкости газов реализуется путем его отбора и заполнения им емкости, пропускания через...
Тип: Изобретение
Номер охранного документа: 0002589454
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7e68

Способ тонометрии глаза

Предлагаемое изобретение относится к медицине, в частности к измерению внутриглазного давления, и может быть использовано для измерения офтальмотонуса в раннем посттравматическом периоде. Организуют исследуемый и опорный сигналы при воздействии на глаз и лобную часть лица вибрирующим датчиком,...
Тип: Изобретение
Номер охранного документа: 0002601178
Дата охранного документа: 27.10.2016
Showing 41-50 of 74 items.
10.06.2015
№216.013.525a

Способ и устройство определения влажности капиллярно-пористых материалов по ипульсной динамической характеристике

Группа изобретений относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Способ определения влажности капиллярно-пористых материалов заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии,...
Тип: Изобретение
Номер охранного документа: 0002552603
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.537f

Способ диагностики патологии микроциркуляции сосудов нижних конечностей

Изобретение относится к медицине и предназначено для диагностики патологии микроциркуляции сосудов нижних конечностей. Производят съемку и определяют S - площадь стопы в видимом диапазоне длин волн. Определяют S - площадь термографической фигуры стоп. Исключают точки термограммы, выходящие за...
Тип: Изобретение
Номер охранного документа: 0002552896
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5739

Электробаромембранный аппарат рулонного типа

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной...
Тип: Изобретение
Номер охранного документа: 0002553859
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573b

Гидродинамический смеситель

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость-жидкость" и "газ-жидкость". Смеситель содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002553861
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58e1

Устройство контроля плотности

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности содержит измерительную емкость с крышкой, к...
Тип: Изобретение
Номер охранного документа: 0002554294
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.58e2

Устройство для измерения температуры

Изобретение относится к области измерительной техники, в частности к термометрии. Устройство содержит термопреобразователь 1, выход которого соединен с индикатором 2 температуры и через последовательно соединенные первый вход первого блока вычитания 3, усилитель 4, масштабирующий элемент 5,...
Тип: Изобретение
Номер охранного документа: 0002554295
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cf0

Устройство для исследования физико-механических свойств корнеклубнеплодов

Изобретение относится к области сельского хозяйства и может быть использовано для исследования физико-механических свойств корнеклубнеплодов. Устройство для исследования физико-механических свойств корнеклубнеплодов содержит раму (1) с прикрепленными к ней электродвигателем (2), на валу...
Тип: Изобретение
Номер охранного документа: 0002555333
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6255

Устройство для измельчения

Изобретение относится к сельскохозяйственному производству, в частности к устройствам для измельчения корнеклубнеплодов, используемых в технологических линиях на животноводческих фермах и комплексах. Устройство для измельчения содержит цилиндрический корпус со сменным блоком ножей, вертикально...
Тип: Изобретение
Номер охранного документа: 0002556720
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6551

Способ сегментации изображения

Изобретение относится к средствам сегментации изображения. Техническим результатом является повышение быстродействия сегментации. В способе для выделения участков изображения, содержащих движущиеся объекты, производят обнуление пикселей с одинаковыми номерами в обоих кадрах последовательно с...
Тип: Изобретение
Номер охранного документа: 0002557484
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.6f82

Конвективно-вакуумная сушилка

Изобретение относится к сушильной технике, а более конкретно к сушильным аппаратам с активными гидродинамическими режимами, предназначенными для сушки дисперсных материалов во взвешенном закрученном слое, и может найти применение при переработке сельскохозяйственных продуктов, получении...
Тип: Изобретение
Номер охранного документа: 0002560116
Дата охранного документа: 20.08.2015
+ добавить свой РИД