×
10.04.2015
216.013.3f8e

Результат интеллектуальной деятельности: АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые вставки 3, 7, при этом загрузка 5 помещается непосредственно во внутренний объем кварцевого тигля 4, а графитовые вставки 3, 7 размещены снаружи по обе стороны тигля 4, между корпусом 1 ампулы и одной из графитовых вставок 3, 7 установлен демпфирующий элемент 2 из углеграфитового войлока. Изобретение позволяет выращивать кристаллы GaSe повышенного качества. 2 ил.
Основные результаты: Ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, отличающаяся тем, что загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.

Выращивание кристаллов в условиях микрогравитации - важное направление в быстро развивающемся космическом материаловедении.

Предлагаемое изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов моноселенида галлия в условиях микрогравитации.

Кристаллы GaSe широко используются в нелинейной оптике, а также могут применяться для создания детекторов ядерных частиц, фотоприемников, устройств поляризационной оптики. Выращивание кристаллов GaSe в условиях микрогравитации открывает широкие перспективы для дальнейшего повышения качества материала.

Наиболее близким к заявляемому по своей технической сущности устройству является ампула для выращивания кристаллов GaSb в условиях микрогравитации (Carlos R. Lopez, Jerey R. Mileham, Reza Abbaschian. Microgravity growth of GaSb single crystals by the liquid encapsulated melt zone (LEMZ) technique. Journal of Crystal Growth 200 (1999) 1-12.) - прототип. Ампула состоит из герметичного корпуса и тигля, выполненных из кварцевого стекла, в котором размещаются загрузка GaSb, инкапсулированная в оболочку из смеси солей NaCl и KCl. Осевые и радиальные положения кристалла фиксируются молибденовыми штифтами в графитовых вставках. Использование конструкции-прототипа в качестве ампулы для выращивания кристаллов GaSe невозможно из-за следующих недостатков: а) температура плавления оболочки существенно ниже температуры плавления GaSe, поэтому оболочка из смеси солей NaCl и KCl непригодна для использования в качестве материала тигля для выращивания монокристаллов селенида галлия; б) фиксация загрузки в графитовых вставках может привести к загрязнению расплава ионами железа, содержащимися в графите в качестве примеси; в) при достижении температуры расплава GaSe (1100°C) в процессе выращивания молибденовые штифты начнут химически взаимодействовать с графитовыми вставками, что приведет к разрушению конструкции; г) отсутствие демпфирующего элемента, замедляющего осевые перемещения кварцевого тигля при вибрациях ампулы в процессе полета, а также компенсирующего различие линейного расширения графита и кварцевого стекла с ростом температуры, может привести к разрушению ампулы.

Задачей предлагаемого устройства является создание ампулы для выращивания кристаллов GaSe в условиях микрогравитации.

Заявляемая в качестве изобретения ампула для выращивания кристаллов GaSe в условиях микрогравитации лишена недостатков прототипа. Технический результат достигается тем, что ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, при этом загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.

Конструкция ампулы представлена на фиг.1а и фиг.1б, где 1 - корпус ампулы, 2 - углеграфитовый войлок, 3 и 7 - графитовые вставки, 4 - кварцевый тигель, 5 - загрузка GaSe, 6 и 8 - герметизирующие кварцевые пробки.

Сборка ампулы, представленной на фиг.1а, осуществляется следующим образом: в корпусе ампулы 1 последовательно размещаются: демпфирующая шайба из углеграфитового войлока 2, графитовая вставка 3, кварцевый тигель 4 с загрузкой поликристаллического GaSe 5 и пустого пространства, оставленного с учетом коэффициента объемного расширения GaSe при плавлении; тигель 4 вакуумируется и герметично запаивается кварцевой пробкой 6; далее следуют: графитовая вставка 7; затем ампула вакуумируется и герметично запаивается кварцевой пробкой 8.

Сборка ампулы, представленной на фиг.1б, осуществляется следующим образом: в корпусе ампулы 1 последовательно размещаются: графитовая вставка 3, кварцевый тигель 4 с загрузкой поликристаллического GaSe 5 и пустого пространства, оставленного с учетом коэффициента объемного расширения GaSe при плавлении; тигель 4 вакуумируется и герметично запаивается кварцевой пробкой 6; далее следуют: графитовая вставка 7 и демпфирующая шайба из углеграфитового войлока 2; затем ампула вакуумируется и герметично запаивается кварцевой пробкой 8.

Два варианта последовательности сборки ампулы отличается между собой расположением демпфирующей шайбы из углеграфитового войлока 2: на фиг.1а она расположена перед графитовой вставкой 3, а на фиг.1б - размещается после графитовой вставки 7. Такое расположение демпфирующей шайбы из углеграфитового войлока не влияет на технический результат изобретения и дает возможность углеграфитовому войлоку замедлять осевые перемещения кварцевого тигля при вибрациях ампулы в процессе полета, а также компенсировать различие линейного расширения графита и кварцевого стекла с ростом температуры.

Назначение элементов ампулы. Кварцевый тигель 4 задает геометрию кристалла и, как следствие, геометрию оптического элемента в поперечном сечении (для селенида галлия механическая обработка затруднена, т.к. кристаллы имеют ярко выраженную слоистую структуру и легко деформируются в определенных кристаллографических направлениях, поэтому получение оптических элементов достигается исключительно скалыванием по спайности). Количество селенида галлия, загружаемого в кварцевый тигель, рассчитывают с учетом объемного расширения материала при фазовом переходе, чтобы при плавлении расплав не разорвал кварцевый тигель изнутри. Графитовые вставки 3 и 7 служат для уменьшения радиального градиента температурного поля в растущем кристалле (осевой градиент задается нагревателем технологической установки). Кварцевая пробка 6 выполнена в форме стакана и служит для уменьшения теплового потока к загрузке селенида галлия при запайке кварцевого тигля. Форма пробки 8 выбрана исходя из конструктивных особенностей технологической установки.

Готовая к работе ампула размещается в технологической установке, отправляемой на околоземную орбиту. На борту космического аппарата включают нагреватель технологической установки, обеспечивающий расплавление исходного поликристаллического слитка. После этого начинается процесс кристаллизации путем перемещения с заданной скоростью фронта кристаллизации. После завершения процесса кристаллизации ампулу охлаждают и извлекают из технологической установки.

Ампула для выращивания кристаллов успешно прошла динамические и ресурсные испытания, а также наземную отработку космических экспериментов в «НИИ стартовых комплексов имени В.П. Бармина».

Ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, отличающаяся тем, что загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.
АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ
АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ
Источник поступления информации: Роспатент

Showing 21-30 of 94 items.
20.01.2016
№216.013.a220

Композиция углеродной заготовки для получения sic/c/si керамики и способ получения sic/c/si изделий

Изобретение относится к получению керамики на основе SiC/C/Si, которая может быть использована для производства конструкционных изделий, используемых в нефтедобывающей и нефтеперерабатывающей, химической, металлургической и пищевой промышленности, ВПК, ЖКХ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002573146
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c143

Способ изготовления высокотемпературного фильтрующего материала для агрессивных жидкостей и газов

Изобретение относится к области химической технологии. Способ изготовления включает пропитку углеродных волокон расплавленным кремнием с удалением избыточного кремния растворением в смеси плавиковой и азотной кислот. Полученный фильтрующий материал образован нитями карбида кремния в текстильной...
Тип: Изобретение
Номер охранного документа: 0002576439
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3dc7

Фотохромное люминесцентное стекло

Изобретение относится к области материалов для твердотельных индикаторов ультрафиолетового излучения. Фотохромное люминесцентное стекло содержит оксид европия EuO в концентрации 0,43-0,49% (мас.) и тетраборат лития LiBO (остальное). Стекло интенсивно люминесцирует при воздействии...
Тип: Изобретение
Номер охранного документа: 0002583967
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dca

Способ дифференциальной диагностики глиом головного мозга человека

Изобретение относится к области молекулярной биологии и медицины, в частности к онкологии. Из образца опухолевой ткани головного мозга выделяют суммарный пул РНК (в том числе содержащий и микроРНК) любым из известных способов. Далее проводят измерение уровней экспрессии 10 микроРНК, а именно...
Тип: Изобретение
Номер охранного документа: 0002583871
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.426a

Способ увеличения размеров алмазов

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом...
Тип: Изобретение
Номер охранного документа: 0002585634
Дата охранного документа: 27.05.2016
12.01.2017
№217.015.580f

Трещиностойкие волокнистые керамические композиты

Изобретение относится к области высокотемпературных керамических материалов и может быть использовано при разработке конструкционных композитов с хрупкими компонентами. Трещиностойкие волокнистые керамические композиты содержат керамические матрицы и оксидные волокна. Используют...
Тип: Изобретение
Номер охранного документа: 0002588534
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.7e6d

Способ нанесения газоплотного покрытия из карбида кремния

Изобретение относится к области термозащитных и антиокислительных покрытий, и может быть использовано для повышения химической инертности и температуры эксплуатации материалов, используемых в авиакосмической промышленности, топливо-энергетическом комплексе и др. Способ нанесения газоплотного...
Тип: Изобретение
Номер охранного документа: 0002601049
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.823a

Способ нанесения массивов углеродных нанотрубок на металлические подложки

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические...
Тип: Изобретение
Номер охранного документа: 0002601335
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8350

Сапфировый терагерцовый фотонно-кристаллический волновод

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде...
Тип: Изобретение
Номер охранного документа: 0002601770
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
Showing 21-30 of 72 items.
20.01.2016
№216.013.a220

Композиция углеродной заготовки для получения sic/c/si керамики и способ получения sic/c/si изделий

Изобретение относится к получению керамики на основе SiC/C/Si, которая может быть использована для производства конструкционных изделий, используемых в нефтедобывающей и нефтеперерабатывающей, химической, металлургической и пищевой промышленности, ВПК, ЖКХ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002573146
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c143

Способ изготовления высокотемпературного фильтрующего материала для агрессивных жидкостей и газов

Изобретение относится к области химической технологии. Способ изготовления включает пропитку углеродных волокон расплавленным кремнием с удалением избыточного кремния растворением в смеси плавиковой и азотной кислот. Полученный фильтрующий материал образован нитями карбида кремния в текстильной...
Тип: Изобретение
Номер охранного документа: 0002576439
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3dc7

Фотохромное люминесцентное стекло

Изобретение относится к области материалов для твердотельных индикаторов ультрафиолетового излучения. Фотохромное люминесцентное стекло содержит оксид европия EuO в концентрации 0,43-0,49% (мас.) и тетраборат лития LiBO (остальное). Стекло интенсивно люминесцирует при воздействии...
Тип: Изобретение
Номер охранного документа: 0002583967
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dca

Способ дифференциальной диагностики глиом головного мозга человека

Изобретение относится к области молекулярной биологии и медицины, в частности к онкологии. Из образца опухолевой ткани головного мозга выделяют суммарный пул РНК (в том числе содержащий и микроРНК) любым из известных способов. Далее проводят измерение уровней экспрессии 10 микроРНК, а именно...
Тип: Изобретение
Номер охранного документа: 0002583871
Дата охранного документа: 10.05.2016
27.05.2016
№216.015.426a

Способ увеличения размеров алмазов

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом...
Тип: Изобретение
Номер охранного документа: 0002585634
Дата охранного документа: 27.05.2016
12.01.2017
№217.015.580f

Трещиностойкие волокнистые керамические композиты

Изобретение относится к области высокотемпературных керамических материалов и может быть использовано при разработке конструкционных композитов с хрупкими компонентами. Трещиностойкие волокнистые керамические композиты содержат керамические матрицы и оксидные волокна. Используют...
Тип: Изобретение
Номер охранного документа: 0002588534
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.7e6d

Способ нанесения газоплотного покрытия из карбида кремния

Изобретение относится к области термозащитных и антиокислительных покрытий, и может быть использовано для повышения химической инертности и температуры эксплуатации материалов, используемых в авиакосмической промышленности, топливо-энергетическом комплексе и др. Способ нанесения газоплотного...
Тип: Изобретение
Номер охранного документа: 0002601049
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.823a

Способ нанесения массивов углеродных нанотрубок на металлические подложки

Изобретение относится к нанотехнологии и может быть использовано для изготовления автоэлектронных эмиттеров. Углеродные нанотрубки осаждают на металлические подложки в дуговом реакторе в рабочей атмосфере на основе инертного газа, содержащей водород 8-10 об.% и гелий - остальное. Металлические...
Тип: Изобретение
Номер охранного документа: 0002601335
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8350

Сапфировый терагерцовый фотонно-кристаллический волновод

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде...
Тип: Изобретение
Номер охранного документа: 0002601770
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
+ добавить свой РИД